1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fantom [35]
3 years ago
15

Cavitation usually occurs because:

Engineering
1 answer:
IgorLugansk [536]3 years ago
3 0

Answer:

B) the liquid accelerated to high velocities.

<em>I</em><em> </em><em>hope</em><em> </em><em>this helps</em><em> </em>

You might be interested in
Which best describes the body in terms of simple machines?
alex41 [277]

Answer:B

Explanation:

5 0
3 years ago
Air exits a compressor operating at steady-state, steady-flow conditions at 150 oC, 825 kPa, with a velocity of 10 m/s through a
ioda

Answer:

a) Qe = 0.01963 m^3 / s , mass flow rate m^ = 0.1334 kg/s

b) Inlet cross sectional area = Ai = 0.11217 m^2 , Qi = 0.11217 m^3 / s    

Explanation:

Given:-

- The compressor exit conditions are given as follows:

                  Pressure ( Pe ) = 825 KPa

                  Temperature ( Te ) = 150°C

                  Velocity ( Ve ) = 10 m/s

                  Diameter ( de ) = 5.0 cm

Solution:-

- Define inlet parameters:

                  Pressure = Pi = 100 KPa

                  Temperature = Ti = 20.0

                  Velocity = Vi = 1.0 m/s

                  Area = Ai

- From definition the volumetric flow rate at outlet ( Qe ) is determined by the following equation:

                   Qe = Ae*Ve

Where,

           Ae: The exit cross sectional area

                   Ae = π*de^2 / 4

Therefore,

                  Qe = Ve*π*de^2 / 4

                  Qe = 10*π*0.05^2 / 4

                  Qe = 0.01963 m^3 / s

 

- To determine the mass flow rate ( m^ ) through the compressor we need to determine the density of air at exit using exit conditions.

- We will assume air to be an ideal gas. Thus using the ideal gas state equation we have:

                   Pe / ρe = R*Te  

Where,

           Te: The absolute temperature at exit

           ρe: The density of air at exit

           R: the specific gas constant for air = 0.287 KJ /kg.K

             

                ρe = Pe / (R*Te)

                ρe = 825 / (0.287*( 273 + 150 ) )

                ρe = 6.79566 kg/m^3

- The mass flow rate ( m^ ) is given:

               m^ = ρe*Qe

                     = ( 6.79566 )*( 0.01963 )

                     = 0.1334 kg/s

- We will use the "continuity equation " for steady state flow inside the compressor i.e mass flow rate remains constant:

              m^ = ρe*Ae*Ve = ρi*Ai*Vi

- Density of air at inlet using inlet conditions. Again, using the ideal gas state equation:

               Pi / ρi = R*Ti  

Where,

           Ti: The absolute temperature at inlet

           ρi: The density of air at inlet

           R: the specific gas constant for air = 0.287 KJ /kg.K

             

                ρi = Pi / (R*Ti)

                ρi = 100 / (0.287*( 273 + 20 ) )

                ρi = 1.18918 kg/m^3

Using continuity expression:

               Ai = m^ / ρi*Vi

               Ai = 0.1334 / 1.18918*1

               Ai = 0.11217 m^2          

- From definition the volumetric flow rate at inlet ( Qi ) is determined by the following equation:

                   Qi = Ai*Vi

Where,

           Ai: The inlet cross sectional area

                  Qi = 0.11217*1

                  Qi = 0.11217 m^3 / s    

- The equations that will help us with required plots are:

Inlet cross section area ( Ai )

                Ai = m^ / ρi*Vi  

                Ai = 0.1334 / 1.18918*Vi

                Ai ( V ) = 0.11217 / Vi   .... Eq 1

Inlet flow rate ( Qi ):

                Qi = 0.11217 m^3 / s ... constant  Eq 2

               

6 0
3 years ago
What is the gear ratio of the given train
Olin [163]

Answer:

1/4

Explanation:

.......................

7 0
3 years ago
A pumping test was made in pervious gravels and sands extending to a depth of 50 ft. ,where a bed of clay was encountered. The n
Vikki [24]

Answer:per minute from the pumping well, a steady state was attained in about 24 hr. The draw-down at a distance of 10 ft. was 5.5 ft. and at 25 ft. was 1.21 ft.

Explanation:

6 0
3 years ago
Describe carbonation as it applies to the four-stroke engine.
valentinak56 [21]
Carbonation is more of a healer to the engine
5 0
3 years ago
Read 2 more answers
Other questions:
  • Suppose that a wing component on an aircraft is fabricated from an aluminum alloy that has a plane strain fracture toughness of
    13·1 answer
  • A receptacle, plug, or any other electrical device whose design limits the ability of an electrician to come in contact with any
    14·1 answer
  • ). A company periodically tests its product for tread wear under simulated conditions. Thirty random samples, each containing 5
    11·1 answer
  • What kind of volcano usually forms over a hot spot?
    15·2 answers
  • You just purchased a 400-L rigid tank for a client who works in the gas industry. The tank is delivered pre-filled with 3 kg of
    8·1 answer
  • What substance do humans give to livestock to help them stay healthy?
    5·1 answer
  • The value 100 MW is equivalent to (a) 100×10^6 w (b) 100 x 10^-6 w (c) 100 x 10^-3 w (d) 100 x 10^3 w
    14·1 answer
  • What is the purpose of making a jello pool
    6·1 answer
  • What are some sources of resistance? (Check all
    5·1 answer
  • Explain the concept of energy conversion as applied to the generation of electricity also known as electrical energy​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!