1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ziro4ka [17]
3 years ago
6

This elementary problem begins to explore propagation delayand transmission delay, two central concepts in data networking. Cons

ider two hosts A andB, connected by a single link of rate R bps.suppose that the two hosts are separated by mmeters, and supose the propagation speed along the link is s meters/sec. Host A is to send a packet ofsize L bits to Host B.a. Express the propagation delay d(prop) interms of L and R.b. Determine the trnasmission time of the packet d(trans) in termsof L and R.c. Ignoring processing and queing delays obtain an expression forthe end to end delay.d. Supose Host A begins to transmit packet at time t=0 . At timet=d(trans) where is the last bit of the packet.e. Suppose d(prop)is greater than d(trans) . At time t= d(trans)where is the first bit of the packetf. Suppose d(prop)is less than d(trans) . At time t= d(trans) whereis the first bit of the packetg. Suppose s=2.5* 10power(8), L=100 bits and R=28 kbps. find thedistance m so tha d(prop) equals d(trans).
Engineering
1 answer:
telo118 [61]3 years ago
5 0

Explanation:

(a)

Here, distance between hosts A and B is m meters and, propagation speed along the link is s meter/sec

Hence, propagation delay, d_{prop} = m/sec (s)

(b)

Here, size of the packet is L bits

And the transmission rate of the link is R bps

Hence, the transmission time of the packet,  d_{trans} = L/R

(c)

As we know, end-to-end delay or total no delay,

\mathrm{d}_{\text {nodal }}=\mathrm{d}_{\text {proc }}+\mathrm{d}_{\text {quar }}+d_{\max }+d_{\text {prop }}

Here,  $\mathrm{d}_{\text {rroc }}$ and $\mathrm{d}_{\text {quat }}$ \\Hence, $\mathrm{d}_{\text {rodal }}=\mathrm{d}_{\text {trass }}+\mathrm{d}_{\text {prop }}$ \\We know, $\mathrm{d}_{\text {trax }}=\mathrm{L} / \mathrm{R}$ sec and $\mathrm{d}_{\text {vapp }}=\mathrm{m} / \mathrm{s}$ sec\text { Hence, } {d_{\text {nodal }}}=\mathrm{L} / \mathrm{R}+\mathrm{m} / \mathrm{s} \text { seconds }

(d)

The expression, time time $t=d_{\text {trans }}$ means the\at time since transmission started is equal to transmission delay.

As we know, transmission delay is the time taken by host to push out the packet.

Hence, at time $t=d_{\text {trans }}$ the last bit of the packet has been pushed out or transmitted.

(e)

If \ d_{prop} >d_{trans}

Then, at time $t=d_{\text {trans }}$ the bit has been transmitted from host A, but to condition (1),  the first bit has not reached B.

(f)

If \ d_{prop}

Then, at time $t=d_{\text {trans }}$, the first bit has reached destination on B

Here,s=2.5 \times 10^{8} \mathrm{sec}

\begin{aligned}&\mathrm{L}=100 \mathrm{Bits} \text { and }\\&\mathrm{R}=28 \mathrm{kbps} \text { or } 28 \times 1000 \mathrm{bps}\end{aligned}

It's given that \ d_{prop} =d_{trans}

Hence,

        \begin{aligned}\ & \frac{L}{R}=\frac{m}{s} \\m &=s \frac{L}{R} \\&=\frac{2.5 \times 10^{8} \times 100}{28 \times 1000} \\&=892.9 \mathrm{km}\end{aligned}

You might be interested in
Brainliest need help
insens350 [35]

Answer:

answer c

Explanation:

4 0
2 years ago
Una frase de: ama la vida quien___________________________________
TEA [102]

Answer:

A phrase from: who loves life

Explanation:

5 0
3 years ago
help me please help me please help me please help me please help me please help me please help me please help me please help me
kakasveta [241]

Answer:

With what?

Explanation:

Brainliest?

7 0
3 years ago
Read 2 more answers
Why do we care about a material's ability to resist torsional deformation?
lesya692 [45]

Answer:

(A) Because the angle of twist of a material is often used to predict its shear toughness

Explanation:

In engineering, torsion is the solicitation that occurs when a moment is applied on the longitudinal axis of a construction element or mechanical prism, such as axes or, in general, elements where one dimension predominates over the other two, although it is possible to find it in diverse situations.

The torsion is characterized geometrically because any curve parallel to the axis of the piece is no longer contained in the plane initially formed by the two curves. Instead, a curve parallel to the axis is twisted around it.

The general study of torsion is complicated because under that type of solicitation the cross section of a piece in general is characterized by two phenomena:

1- Tangential tensions appear parallel to the cross section.

2- When the previous tensions are not properly distributed, which always happens unless the section has circular symmetry, sectional warps appear that make the deformed cross sections not flat.

5 0
3 years ago
Discoloration on walls, work surfaces, ceilings, walls, and pipes may indicate a leak that is causing you to waste raw materials
suter [353]

Answer:

True :)

Explanation:

If this is a true or false question.

6 0
2 years ago
Other questions:
  • Using any of the bilinear transform, matched pole-zero, or impulse invariance techniques in converting a continuous-time system
    14·2 answers
  • When storing used oil, it need to be kept in________ container?
    11·1 answer
  • Which career related to architecture deals with the planning of entire cities and focuses on designing and arranging buildings,
    9·2 answers
  • Who is the best musician in Nigeria<br>​
    11·2 answers
  • Technician A says that reinforcements may be made of plastic.
    6·1 answer
  • Which step in the engineering design process likely broke down in the following scenario?
    14·1 answer
  • Software that is released to have users test out the "bugs" is known as Ransomeware O Break-in software 2 O Flim flam software O
    15·1 answer
  • Contrast moral and immoral creativity and innovation<br>​
    12·1 answer
  • The regulator is closed when the adjusting screw is turned in (clockwise).
    15·1 answer
  • The ratio of the volume of charge admitted at n. T. P. To the swept volume of the piston is called.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!