The correct answer is<span> B.The speed of sound in air is directly proportional to the temperature of the air.
When the temperature increases so does the speed of sound. Sound is faster by </span>0.60 m/s for every higher degree in air temperature because the air density is reduced and the sound can travel faster.
The meter out circuit is the flow control circuit design that can most effectively control an overrunning load.
The meter-out circuit can be very accurate, but are not efficient. The meter-out circuit can control overrunning as well as opposing loads while the other one method must be used with opposing loads only. The choice of flown control valve method and the location of the flow control in the circuit are dependent on the type of application being controlled.
<h3>What is a Circuit ?</h3>
In electronics, a circuit is a complete circular conduit through which electricity flows. A simple circuit consists of conductors, a load, and a current source. The term "circuit" broadly refers to any continuous path via which electricity, data, or a signal might flow.
- The directional valve shifts, causing the actuator to move faster than pump flow can fill it due to an overrunning load. Oil is leaking from one side, whereas there is none on the other.
Hence, flow control circuit design that can best control an overrunning load is the opposing circuit
Learn more about Circuit here:
brainly.com/question/26064065
#SPJ4
Answer:
Torque,
Explanation:
Given that,
The loop is positioned at an angle of 30 degrees.
Current in the loop, I = 0.5 A
The magnitude of the magnetic field is 0.300 T, B = 0.3 T
We need to find the net torque about the vertical axis of the current loop due to the interaction of the current with the magnetic field. We know that the torque is given by :

Let us assume that, 
is the angle between normal and the magnetic field, 
Torque is given by :

So, the net torque about the vertical axis is
. Hence, this is the required solution.
Answer:
19.99 kg m²/s
Explanation:
Angular Momentum (L) is defined as the product of the moment of Inertia (I) and angular velocity (w)
L = m r × v.
r and v are perpendicular to each other,
where r = lsinθ.
l = 2.4 m
θ= 34°
g = 9.8 m/s² and m = 5 kg
resolving using newtons second law in the vertical and horizontal components.
T cos θ − m g = 0
T sin θ − mw² lsin θ = 0
where T is the force with which the wire acts on the bob
w = √g / lcosθ
= √ 9.8 / 2.4 ×cos 34
= 2.2193 rad/s
the angular momentum L = mr× v
= mw (lsin θ)²
= 5 × 2.2193 (2.4 ×sin 34°)²
=19.99 kg m²/s