54.15 g
First you start out with the equation n=cv (n= moles, c=molarity, v= volume)
You’re going to multiply 0.10M by 3.30L to get an answer of 0.33 moles of Ca(NO3)2
From there you’re gonna convert the moles to grams to get your answer, first you have to find the molar mass of Ca(NO3)2
This can be done by finding adding the molar mass of each individual substance
The answer you should get for the molar mass is 164.1 g
From there just multiply the number of moles you calculated (0.33 mol) by the molar mass (164.1 g) and your answer is going to be 54.15 g Ca(NO3)2
The answer is b. Mass of the atoms
This is because of the law of conservation of mass. This means the mass in a system (in this case the reaction) can't change, so the quantity can't be added or removed
Answer:
e. 3
Explanation:
In order to solve this problem we need to keep in mind the definition of pH:
As stated by the problem, the hydrogen ion concentration, [H⁺], is 1x10⁻³ M.
As all required information is available, we now can <u>calculate the pH</u>:
The correct option is thus e.
Solids, liquids, gases, and plasma are all matter. When all atoms that make up a substance are the same, then that substance is an element. Elements made of only one kind of atom. Because of this, elements are called "pure" substances.
hope this helps :)