Answer:
The liquid boils.
Explanation:
Vapor pressure is simply defined as the pressure exerted on a substance (solid/liquid) by the vapor of the substance collected just at the top of the surface of the substance. In concise words, it is the pressure of Vapor that is in contact with its solid or liquid state.
For a liquid, it is the pressure of the Vapor gathering at the top of the surface of the liquid.
When this Vapor pressure matches the external pressure, the temperature stays constant and the molecules of the liquid all through the liquid can gain enough energy, rise to the surface of the liquid and break free in gaseous form; thereby, boiling.
The definition of boiling point basically explains that it is the point at which temperature stays constant, and the vapour pressure of the liquid matches the atmospheric/external pressure around the liquid and its liquid molecules change into vapor.
This is why liquids boil faster at higher altitudes; the atmospheric pressure at higher altitudes is reduced, hence, the temperature at which liquid boils at this high altitude is normally lower than its known boiling point temperature.
It is also why food cooks to a temperature higher than the boiling point of water in a pressure cooker/pot. The added pressure ensures that the cooking water boils at temperatures higher than its boiling point; thereby exposing the cooking ingredients to a higher temperature, leading to faster cooking.
Hence, it is obvious why boiling is the answer to this question.
Answer: C
Explanation:
The one closest to the atomic center, there is a single 1s orbital that can hold 2 electrons. At the next energy level, there are four orbitals.
One of the functions of scaffolds in tissue engineering is letter b. cells grow into the correct shape. Scaffolds used in tissue engineering have biomaterials with biological attributes <span>that will enhance cell attachment </span>and topography where cells morph and align.
Answer:
La respuesta a tu pregunta esta abajo.
Explanation:
Cuando un barco navega en un río en el sentido de la corriente, la velocidad que lleva más el impulso que le proporciona la corriente, hace que avance más rápido llegando más pronto a su destino sin tanto esfuerzo del motor. Por lo que gastaría una menor cantidad de combustible.
Cuando el barco se desplaza en sentido contrario a la corriente del motor, la corriente del río hace que su desplazamiento neto sea menor ya que el barco avanza y el río lo regresa un tramo y el esfuerzo del motor el mayor.
En estas condiciones aunque el barco tenga que recorrer la misma distancia que en el caso anterior, en realidad debería sumarse la distancia que lo regresa la corriente y por lo tanto el combustible gastado sera mayor.