Answer:
To calculate the number of atoms in a sample, divide its weight in grams by the amu atomic mass from the periodic table, then multiply the result by Avogadro's number: 6.02 x 10^23. Set up Equation Express the relationship of the three pieces of information you need to calculate the number of atoms in the sample in the form of an equation.
Answer:
See explanation
Explanation:
The reaction between alcohol and acidified potassium dichromate is a redox reaction. This reaction can be used to detect a drunken driver.
Alcohols can be oxidized to aldehydes, ketones and carboxylic acids depending on the structure of the alcohol. Primary alcohols yield adehydes and carboxylic acids while secondary alcohols are oxidized to ketones.
The colour of the acidified potassium dichromate turns from orange to green when exposed to alcohols from the breath of a drunken driver.
Since they can still be unstable...nuetral atoms have the same amount of protons to electrons but to be stable they need to fill up there outer shell by gaining or losing electrons
Answer:
Genetic equilibrium is the state in which allele frequencies do
not change in a generation over generation.
Explanation:
Genetic equilibrium can be described as a situation which arises when a certain allele or genotype remains constant for a species generation over generations. Genetic equilibrium can be maintained if no external factors like mutations affect the population of the species. The phenomenon of natural selection and evolution need to be stopped if a genetic equilibrium is to be maintained. Hardy-Weinberg theorem is the mathematical depiction of genetic equilibrium.
Answer:
The answer to your question is d. 0.5 M
Explanation:
Data
[A] = 1M
K = 0.5
Concentration of B and C at equilibrium = x
Concentration of A at equilibrium = 1 - x
Equation of equilibrium
k = ![\frac{[B][C]}{A}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BB%5D%5BC%5D%7D%7BA%7D)
Substitution
![0.5 = \frac{[x][x]}{1 - x}](https://tex.z-dn.net/?f=0.5%20%3D%20%5Cfrac%7B%5Bx%5D%5Bx%5D%7D%7B1%20-%20x%7D)
Simplification
0.5 = 
Solve for x
0.5(1 - x) = x²
0.5 - 0.5x = x²
x² + 0.5x - 0.5 = 0
Find the roots x₁ = 0.5 x₂ = -1
There are no negative concentrations so the concentration of A at equilibrium is
[A] = 1 - 0.5
= 0.5 M