Ca(OH)2(aq) + 2HCl(aq)------> CaCl2(aq) + 2H2O(l) ΔH-?
CaO(s) + 2HCl(aq)-----> CaCl2(aq) + H2O(l), Δ<span>H = -186 kJ
</span>
CaO(s) + H2O(l) -----> Ca(OH)2(s), Δ<span>H = -65.1 kJ
</span>
1) Ca(OH)2 should be reactant, so
CaO(s) + H2O(l) -----> Ca(OH)2(s)
we are going to take as
Ca(OH)2(s)---->CaO(s) + H2O(l), and ΔH = 65.1 kJ
2) Add 2 following equations
Ca(OH)2(s)---->CaO(s) + H2O(l), and ΔH = 65.1 kJ
<span><u>CaO(s) + 2HCl(aq)-----> CaCl2(aq) + H2O(l), and ΔH = -186 kJ</u>
</span>Ca(OH)2(s)+CaO(s) + 2HCl(aq)--->CaO(s) + H2O(l)+CaCl2(aq) + H2O(l)
Ca(OH)2(s)+ 2HCl(aq)---> H2O(l)+CaCl2(aq) + H2O(l)
By addig these 2 equation, we got the equation that we are needed,
so to find enthalpy of the reaction, we need to add enthalpies of reactions we added.
ΔH=65.1 - 186 ≈ -121 kJ
Answer:
E. a small yellow ball that represents the Sun
Explanation:
key word on the question, 'physical'
Answer:
pH = 6.8124
Explanation:
We know pH decreases with increase in temperature.
At room temperature i.e. 25⁰c pH of pure water is equal to 7
We know
Kw = [H⁺][OH⁻]...............(1)
where Kw = water dissociation constant
At equilibrium [H⁺] = [OH⁻]
So at 37⁰c i.e body temperature Kw = 2.4 × 10⁻¹⁴
From equation (1)
[H⁺]² = 2.4 × 10⁻¹⁴
[H⁺] = √2.4 × 10⁻¹⁴
[H⁺] = 1.54 × 10⁻⁷
pH = - log[H⁺]
= - log{1.54 × 10⁻⁷}
= 6.812
he is a good scientist because he postulated that chemical reactions resulted in the rearrangement of the reacting atoms
Monosaccharides are the simplest carbohydrates. Although glucose and fructose have the same molecular formula they have different structures. They cannot be further hydrolyzed to simple sugars. Disaccharides contains two monosaccharides. For example, lactose and sucrose. Polysaccharides on the other hand contains a large number of saccharides. An example is starch, glycogen and dextrans. Amino acids contains an amino acid, carboxyl group and an R-group. Whatever the diagram you have, you just look at the structures contained.