1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
scZoUnD [109]
3 years ago
5

Which planet is least like earth? Mars,Venus, or Jupiter

Physics
2 answers:
irina1246 [14]3 years ago
8 0
Jupiter is least like Earth. Planets like Venus, and Mars are mostly rocky and are more or less similar in interbal composition. Jupiter is large, gaseous, and hydrogen-rich.
Brums [2.3K]3 years ago
7 0

Answer:

mars, reason why is because they both are diff from the size

Explanation:

You might be interested in
Obesity refers to gradual weight gain as a person grows older
maks197457 [2]
Obesity is someone over weight for there age

5 0
3 years ago
A certain radio wave has a wavelength of 6.0 × 10-2m. What is its frequency in hertz?
rodikova [14]

Answer:

The frequency of the wave is 5 x 10⁹ Hz

Explanation:

Given;

wavelength of the radio wave, λ = 6.0 × 10⁻²m

radio wave is an example of electromagnetic wave, and electromagnetic waves travel with speed of light, which is equal to 3 x 10⁸ m/s².

Applying wave equation;

V = F λ

where;

V is the speed of the wave

F is the frequency of the wave

λ  is the wavelength

Make F the subject of the formula

F = V /  λ

F = (3 x 10⁸) / (6.0 × 10⁻²)

F = 5 x 10⁹ Hz

Therefore, the frequency of the wave is 5 x 10⁹ Hz

8 0
4 years ago
A physical pendulum in the form of a planar object moves in simple harmonic motion with a frequency of 0.680 Hz. The pendulum ha
sineoko [7]

Answer:

Therefore, the moment of inertia is:

I=0.37 \: kgm^{2}

Explanation:

The period of an oscillation equation of a solid pendulum is given by:

T=2\pi \sqrt{\frac{I}{Mgd}} (1)

Where:

  • I is the moment of inertia
  • M is the mass of the pendulum
  • d is the distance from the center of mass to the pivot
  • g is the gravity

Let's solve the equation (1) for I

T=2\pi \sqrt{\frac{I}{Mgd}}

I=Mgd(\frac{T}{2\pi})^{2}

Before find I, we need to remember that

T = \frac{1}{f}=\frac{1}{0.680}=1.47\: s

Now, the moment of inertia will be:

I=2*9.81*0.340(\frac{1.47}{2\pi})^{2}  

Therefore, the moment of inertia is:

I=0.37 \: kgm^{2}

I hope it helps you!

7 0
3 years ago
If the Velocity of the body<br> is increased to 3v, determine the kinetic energy
Rom4ik [11]

ANSWER; KE=5mv^2 so it is proportional to v^2.

Explanation:So if you triple the velocity you are replacing v with 3v. Then you get (3v)^2=9v^2.

7 0
3 years ago
A merry-go-round with a rotational inertia of 600 kg m2 and a radius of 3.0 m is initially at rest. A 20 kg boy approaches the m
nekit [7.7K]

Answer:

The velocity of the merry-go-round after the boy hops on the merry-go-round is 1.5 m/s

Explanation:

The rotational inertia of the merry-go-round = 600 kg·m²

The radius of the merry-go-round = 3.0 m

The mass of the boy = 20 kg

The speed with which the boy approaches the merry-go-round = 5.0 m/s

F_T \cdot r = I \cdot \alpha  = m \cdot r^2  \cdot \alpha

Where;

F_T = The tangential force

I =  The rotational inertia

m = The mass

α = The angular acceleration

r = The radius of the merry-go-round

For the merry go round, we have;

I_m \cdot \alpha_m  = I_m \cdot \dfrac{v_m}{r \cdot t}

I_m = The rotational inertia of the merry-go-round

\alpha _m = The angular acceleration of the merry-go-round

v _m = The linear velocity of the merry-go-round

t = The time of motion

For the boy, we have;

I_b \cdot \alpha_b  = m_b \cdot r^2  \cdot \dfrac{v_b}{r \cdot t}

Where;

I_b = The rotational inertia of the boy

\alpha _b = The angular acceleration of the boy

v _b = The linear velocity of the boy

t = The time of motion

When the boy jumps on the merry-go-round, we have;

I_m \cdot \dfrac{v_m}{r \cdot t} = m_b \cdot r^2  \cdot \dfrac{v_b}{r \cdot t}

Which gives;

v_m = \dfrac{m_b \cdot r^2  \cdot \dfrac{v_b}{r \cdot t} \cdot r \cdot t}{I_m} = \dfrac{m_b \cdot r^2  \cdot v_b}{I_m}

From which we have;

v_m =  \dfrac{20 \times 3^2  \times 5}{600} =  1.5

The velocity of the merry-go-round, v_m, after the boy hops on the merry-go-round = 1.5 m/s.

5 0
3 years ago
Other questions:
  • A rectangular aluminum bar (~1.52.1 cm in cross section) and a circular steel rod (~1 cm in radius) are each subjected to an axi
    8·1 answer
  • Does a brick have thermal energy? Also does paper haven't thermal energy?
    5·1 answer
  • What happens if an opaque object is placed in the path of light?
    15·2 answers
  • 12–139. Cars move around the “traffic circle” which is in the shape of an ellipse. If the speed limit is posted at 60 km&gt;h, d
    11·1 answer
  • As you jump on a pogo stick where is the potential energy the greatest?
    14·1 answer
  • NASA decides to put a 128 kg satellite into orbit over the planet Venus because they want to take pictures. The satellite is 37,
    9·1 answer
  • What type of material does not transfer heat well
    12·2 answers
  • A change in the thermal energy can cause other changes to occur in the
    10·1 answer
  • 26. A solid wheel accelerates at 3.25 rad/s2 when a
    6·1 answer
  • If the coefficient of kinetic friction between the puck and the ice is 0.05, how far does the puck slide before coming to rest?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!