Answer:
AY = 16
IY = 9
FG = 30
PA = 24
Step-by-step explanation:
<em>The </em><em>centroid </em><em>of the triangle </em><em>divides each median</em><em> at the ratio </em><em>1: 2</em><em> from </em><em>the base</em>
Let us solve the problem
In Δ AFT
∵ Y is the centroid
∵ AP, TI, and FG are medians
→ By using the rule above
∴ Y divides AP at ratio 1: 2 from the base FT
∴ AY = 2 YP
∵ YP = 8
∴ AY = 2(8)
∴ AY = 16
∵ PA = AY + YP
∴ AP = 16 + 8
∴ AP = 24
∵ Y divides TI at ratio 1: 2 from the base FA
∴ TY = 2 IY
∵ TY = 18
∴ 18 = 2
→ Divide both sides by 2
∴ 9 = IY
∴ IY = 9
∵ Y divides FG at ratio 1:2 from the base AT
∴ FY = 2 YG
∵ FY = 20
∴ 20 = 2 YG
→ Divide both sides by 2
∴ 10 = YG
∴ YG = 10
∵ FG = YG + FY
∴ FG = 10 + 20
∴ FG = 30
Answer:
A translation
Step-by-step explanation:
:)
Part 1)
we have
------> equation A
------> equation B
Multiply by
the equation A
------> equation C
Multiply by
the equation B

-------> equation D
Adds equation C and equation D

therefore
<u>the answer Part 1) is the option A </u>

Part 2)
we have
------> equation A

Simplify Divide by
both sides

------> equation B
the lines A and B are parallel lines, because the slope m is equal
so
The system has no solution
therefore
<u>the answer Part 2) is the option D</u>
There is no x value as there is no solution to the system.
Part 3)
we have
------> equation A

------> equation B
substitute equation B in equation A
![4x+2[x-3]=6](https://tex.z-dn.net/?f=4x%2B2%5Bx-3%5D%3D6)



therefore
<u>the answer part 3) is the option D</u>

Part 4)
Let
x---------> The number of one-step equations
y---------> The number of two-step equations
we know that

-------> equation A
------> equation B
substitute equation A in equation B
![3[1,120-y]-2y=1,300](https://tex.z-dn.net/?f=3%5B1%2C120-y%5D-2y%3D1%2C300)




therefore
<u>the answer part 4) is the option D</u>

X equals 16
12+16=28
28 divided by 2 = 14
Answer:
38 bb 2
Step-by-step explanation:
slimeeyyy