Answer:
a. Wavelength = λ = 20 cm
b. Next distance of maximum intensity will be 40 cm
Explanation:
a. The distance between the two speakers is 20cm. SInce the intensity is maximum which refers that we have constructive interference and the phase difference must be an even multiple of π and equivalent path difference is nλ.
Now when distance increases upto 30 cm between the speakers, the sound intensity becomes zero which means that there is destructive interference and equivalent path is now increased from nλ to nλ + λ/2.
This we get the equation:
(nλ + λ/2) - nλ = 30-20
λ/2 = 10
λ = 20 cm
b. at what distance, sound intensity will be maximum again.
For next point calculation for maximum sound intensity, the path difference must be increased (n+1) λ. The distance must increase by λ/2 from the point of zero intensity.
= 30 + λ/2
= 30 + 20/2
=30+10
=40 cm
<h2>
Answer: Diffraction</h2><h2 />
Diffraction is a characteristic phenomenon that occurs in all types of waves
.
In this sense, <u>diffraction</u> happens when a wave (the light in this case) meets an obstacle or a slit .When this occurs, the light bends around the corners of the obstacle or passes through the opening of the slit that acts as an obstacle, forming <u><em>multiple patterns</em></u> with the shape of the aperture of the slit.
Note that the principal condition for the occurrence of this phenomena is that <u>the obstacle must be comparable in size (similar size) to the size of the wavelength.
</u>
<u />
<u />
Answer:
yes
Explanation:
because when you slow down, the resistance slows with the speed.
Answer:
Temperature after ignition=7883.205 K
Explanation:
The number of moles is,
n=PV/RT
=(1.18x10^6)(47.9x10^-6)/8.314(325)
= 0.0209 moles
a) In this process volume is constant
Q=U
=nCv.dT
dT= Q/nCv
=1970/(1.5x8.314)(0.0209)
= 7558.205 K
The final temperature is,
= 7558.205+325
= 7883.205 K
Answer:
I don't know sorry hopefully I can help with something else tho