True because it has "falling" ability
Let's use the mirror equation to solve the problem:

where f is the focal length of the mirror,

the distance of the object from the mirror, and

the distance of the image from the mirror.
For a concave mirror, for the sign convention f is considered to be positive. So we can solve the equation for

by using the numbers given in the text of the problem:



Where the negative sign means that the image is virtual, so it is located behind the mirror, at 8.6 cm from the center of the mirror.
The answer is True :) have a good day
Answer:
Kf > Ka = Kb > Kc > Kd > Ke
Explanation:
We can apply
E₀ = E₁
where
E₀: Mechanical energy at the beginning of the motion (top of the incline)
E₁: Mechanical energy at the end (bottom of the incline)
then
K₀ + U₀ = K₁ + U₁
If v₀ = 0 ⇒ K₀
and h₁ = 0 ⇒ U₁ = 0
we get
U₀ = K₁
U₀ = m*g*h₀ = K₁
we apply the same equation in each case
a) U₀ = K₁ = m*g*h₀ = 70 Kg*9.81 m/s²*8m = 5493.60 J
b) U₀ = K₁ = m*g*h₀ = 70 Kg*9.81 m/s²*8m = 5493.60 J
c) U₀ = K₁ = m*g*h₀ = 35 Kg*9.81 m/s²*4m = 1373.40 J
d) U₀ = K₁ = m*g*h₀ = 7 Kg*9.81 m/s²*16m = 1098.72 J
e) U₀ = K₁ = m*g*h₀ = 7 Kg*9.81 m/s²*4m = 274.68 J
f) U₀ = K₁ = m*g*h₀ = 105 Kg*9.81 m/s²*6m = 6180.30 J
finally, we can say that
Kf > Ka = Kb > Kc > Kd > Ke
Answer: 459.14 N
Explanation:
from the question, we have
diameter = 10 m
radius (r) = 5 m
weight (Fw) = 670 N
time (t) = 8 seconds
Circular motion has centripetal force and acceleration pointing perpendicular and inwards of the path, therefore we apply the equation below
∑ F = F c = F w − Fn ..............equation 1
Fn = Fw − Fc = mg − (mv^2 / r) ...................equation 2
substituting the value of v as (2πr / T) we now have
Fn = mg − (m(2πr / T )^2) / r
Fn= mg − (4(π^2)mr / T^2) ..........equation 3
Fw (mass of the person) = mg
therefore m = Fw / g
m = 670 / 9.8 = 68.367 kg
now substituting our values into equation 3
Fn = 670 - ( (4 x (π^2) x 68.367 x 5 ) / 8^2)
Fn = 670 - 210.86
Fn = 459.14 N