1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alukav5142 [94]
3 years ago
10

The average distance from the sun to Pluto is approximately 6.10 × 109 km. How long does it take light from 

Physics
1 answer:
Scorpion4ik [409]3 years ago
3 0
V= \frac{S}{t}
t= \frac{S}{V}<u />
t= \frac{S}{c}
t= \frac{6.1*10^{12}}{299792458}
t=20347.4098071s

It takes 20347.4098071s for light from the sun to reach Pluto.
The 6.1*10^9 is replaced by 6.1*10^12 on line 4 because we convert the distance from km to m. 
c = speed of light. If a different value was given in the previous question then use that instead of the value I used to do the final calculation.
You might be interested in
NEED HELP PLEASEEE 15 POINTS
Nezavi [6.7K]

Answer:

c

Explanation:

thamjs

7 0
3 years ago
Read 2 more answers
A nonconducting sphere has radius R = 1.29 cm and uniformly distributed charge q = +3.83 fC. Take the electric potential at the
zalisa [80]

Answer:

a) -2.516 × 10⁻⁴ V

b) -1.33 × 10⁻³ V

Explanation:

The electric field inside the sphere can be expressed as:

E= \frac{kqr}{R^3}

The potential at a distance can be represented as:

V(r) - V(0) = -\int\limits^r_0 {\frac{kqr}{R^3} } \, dr^2

V(r) - V(0) = [\frac{qr^2}{8 \pi E_0R^3 }]₀

V(r) =   -[\frac{qr^2}{8 \pi E_0R^3 }]₀

Given that:

q = +3.83 fc = 3.83 × 10⁻¹⁵ C

r = 0.56 cm

 = 0.56 × 10⁻² m

R = 1.29 cm

  =  1.29 × 10⁻² m

E₀ = 8.85 × 10⁻¹² F/m

Substituting our values; we have:

V(r) = -\frac{(3.83*10^{-15}C)(0.560*10^{-2}m)^2}{8 \pi (8.85*10^{-12}F/m)(1.29*10^{-2}m)^3}

V(r) = -2.15  × 10⁻⁴ V

The difference between the radial distance  and center can be expressed as:

V(r) - V(0) = -\int\limits^R_0 {\frac{kqr}{R^3} } \, dr^2

V(r) - V(0) =  [\frac{qr^2}{8 \pi E_0R^3 }]^R

V(r) = -\frac{qR^2}{8 \pi E_0R^3 }

V(r) = -\frac{q}{8 \pi E_0R }

V(r) = -\frac{(3.83*10^{-15}C)}{8 \pi (8.85*10^{-12}F/m)(1.29*10^{-2}m)}

V(r) = -0.00133

V(r) = - 1.33 × 10⁻³ V

8 0
3 years ago
A mole of ideal gas expands at T=27 °C. The pressure changes from 20 atm to 1 atm. What’s the work that the gas has done and wha
Airida [17]

Answer:

  • The work made by the gas is 7475.69 joules
  • The heat absorbed is 7475.69 joules

Explanation:

<h3>Work</h3>

We know that the differential work made by the gas  its defined as:

dW =  P \ dv

We can solve this by integration:

\Delta W = \int\limits_{s_1}^{s_2}\,dW = \int\limits_{v_1}^{v_2} P \ dv

but, first, we need to find the dependence of Pressure with Volume. For this, we can use the ideal gas law

P \ V = \ n \ R \ T

P = \frac{\ n \ R \ T}{V}

This give us

\int\limits_{v_1}^{v_2} P \ dv = \int\limits_{v_1}^{v_2} \frac{\ n \ R \ T}{V} \ dv

As n, R and T are constants

\int\limits_{v_1}^{v_2} P \ dv = \ n \ R \ T \int\limits_{v_1}^{v_2} \frac{1}{V} \ dv

\Delta W= \ n \ R \ T  \left [ ln (V) \right ]^{v_2}_{v_1}

\Delta W = \ n \ R \ T  ( ln (v_2) - ln (v_1 )

\Delta W = \ n \ R \ T  ( ln (v_2) - ln (v_1 )

\Delta W = \ n \ R \ T  ln (\frac{v_2}{v_1})

But the volume is:

V = \frac{\ n \ R \ T}{P}

\Delta W = \ n \ R \ T  ln(\frac{\frac{\ n \ R \ T}{P_2}}{\frac{\ n \ R \ T}{P_1}} )

\Delta W = \ n \ R \ T  ln(\frac{P_1}{P_2})

Now, lets use the value from the problem.

The temperature its:

T = 27 \° C = 300.15 \ K

The ideal gas constant:

R = 8.314 \frac{m^3 \ Pa}{K \ mol}

So:

\Delta W = \ 1 mol \ 8.314 \frac{m^3 \ Pa}{K \ mol} \ 300.15 \ K  ln (\frac{20 atm}{1 atm})

\Delta W = 7475.69 joules

<h3>Heat</h3>

We know that, for an ideal gas, the energy is:

E= c_v n R T

where c_v its the internal energy of the gas. As the temperature its constant, we know that the gas must have the energy is constant.

By the first law of thermodynamics, we know

\Delta E = \Delta Q - \Delta W

where \Delta W is the Work made by the gas (please, be careful with this sign convention, its not always the same.)

So:

\Delta E = 0

\Delta Q = \Delta W

7 0
2 years ago
3. Describe the flow of one molecule of water through the water cycle, beginning in the ocean.
scZoUnD [109]

molecules of water are never destroyed - they go through various uses in a cycle of re-use. beginning in the ocean. a water molecue is attached to the wet suit of a deep sea diver. when the diver gets back on his boat, the water molecule leaves the ocean. Diver dry his suit under the sun. The water molecule is evaporated to the air. It meets up with more water molecules to form cloud. Cloud becomes rain over ground. Rain drains into stream which merges into river. River runs out to the ocean and the water cycle starts anew.

6 0
3 years ago
Read 2 more answers
Water _____.
Mice21 [21]
Water expands when it freezes (that's why you should never put closed, fully filled water bottles in the freezer !)

6 0
3 years ago
Read 2 more answers
Other questions:
  • Suppose two vectors have unequal magnitudes. can their sum be zero? explain
    7·1 answer
  • A jet travels 5,400 miles in 9 hours. Its average speed is ____ mph. Type in your numerical answer only; do not type any words o
    7·1 answer
  • 7. Choose the correct reaction type for the following.<br> 2KCl → 2K+ Cl2
    9·1 answer
  • When comparing an x-ray to a radio wave, what should you look for to determine which formula represents the x-ray?
    10·2 answers
  • A satellite is in a circular orbit around the Earth at an altitude of 3.18x10 m. Find the period and th orbital speed of the sat
    6·1 answer
  • How can jet streams impact weather
    7·1 answer
  • A 1.6 Kg bird that is flying through the air has 220 J of kinetic energy. How fast is the bird flying?
    15·1 answer
  • A 1200 kg car accelerats from reat to 10.0 m/s in a time of 4.50 seconds. Calculate the force that thr car's tires exerted on th
    9·1 answer
  • Two charges of magnitude ‒Q and +4Q are located as in the figure below. At which position (A, B,
    15·1 answer
  • 1. When red light shines on a red rose, what color do you see? Do the leaves become
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!