Answer:
The focal length of the appropriate corrective lens is 35.71 cm.
The power of the appropriate corrective lens is 0.028 D.
Explanation:
The expression for the lens formula is as follows;

Here, f is the focal length, u is the object distance and v is the image distance.
It is given in the problem that the given lens is corrective lens. Then, it will form an upright and virtual image at the near point of person's eye. The near point of a person's eye is 71.4 cm. To see objects clearly at a distance of 24.0 cm, the corrective lens is used.
Put v= -71.4 cm and u= 24.0 cm in the above expression.


f= 35.71 cm
Therefore, the focal length of the corrective lens is 35.71 cm.
The expression for the power of the lens is as follows;

Here, p is the power of the lens.
Put f= 35.71 cm.

p=0.028 D
Therefore, the power of the corrective lens is 0.028 D.
The speed of light to be slightly less in atmosphere then in vacuum because of absorption and re-emission of light by the atmospheric molecules occurred when light travels through a material
<u>Explanation:</u>
When light passes through atmosphere, it interacts or transmits through the transparent molecules in atmosphere. In this process of transmission through atmosphere, the light will be getting absorbed by them and some will get re-emitted or refracted depending upon wavelength.
But in vacuum the absence of any kind of particles will lead to no interaction and no energy loss, thus the speed of the light will be same in vacuum while due to interactions with molecules of atmosphere, there speed will be slightly less compared to in vacuum.
Answer:
The biggest difference is that gravity is an attractive force while electromagnetism is both an attractive and repelling force. Gravity happens between two objects depending on their masses, while electromagnetism is dependent on the objects' electric charges and the distance between them.
Explanation:
If the resistance of the Air is ignored, we can use the theory given by Galileo in which he warned that the thermal velocity of a body in free fall was given by

Where
g = Gravitational acceleration
t = time
As we can see the speed of objects in free fall is indifferent to the position that is launched (as long as the resistance of the air is ignored) or its mass.
Both bodies will end with the same thermal speed.
Given parameters:
Mass of the body = 200g
Force on the body = 10N
Unknown parameters:
Acceleration produced by the force = ?
To solve this problem we must first define force in terms of mass and acceleration. This is possible due to the Newton's first law of motion.
Force = mass x acceleration
Here the unknown is acceleration and we can easily solve for it.
But we must take the mass to kilogram in order for it to cancel out.
1000g = 1 kg
200g = x kg =
= 0.2kg
Now input the parameters and solve;
10 = 0.2 x acceleration
Acceleration =
= 50m/s²
The acceleration produced by the body is 50m/s²