Answer:
The solid ball and hollow ball both will reach the bottom with the same speed.
Explanation:
The speed of the solid and hollow balls is independent of the mass and the radius. A solid and hollow ball experience same speed on a given incline.
The speed can be calculated as
v = √(10/7)gh
where g is gravitational acceleration and h is the height
sinθ = h/L
h = L*sinθ
h = 3*sin(35)
h = 1.72 m
v = √(10/7)*9.8*1.72
v = 4.91 m/s
Both balls will reach the bottom at the speed of 4.91 m/s.
Answer:
The maximum velocity is 1.58 m/s.
Explanation:
A spring pendulum with stiffness k = 100N/m is attached to an object of mass m = 0.1kg, pulls the object out of the equilibrium position by a distance of 5cm, and then lets go of the hand for the oscillating object. Calculate the achievable vmax.
Spring constant, K = 100 N/m
mass, m = 0.1 kg
Amplitude, A = 5 cm = 0.05 m
Let the angular frequency is w.
The maximum velocity is
Answer:
Q = 282,000 J
Explanation:
Given that,
The mass of liquid water, m = 125 g
Temperature, T = 100°C
The latent heat of vaporization, Hv = 2258 J/g.
We need to find the amount of heat needed to vaporize 125 g of liquid water. We can find it as follows :
or
Q = 282,000 J
So, the required heat is 282,000 J
.
<u>Answer:</u>
The ball is rolling at a speed of 0.02 meter per second.
<u>Step by step explanation:</u>
We are given that there is a 800 gram bowling ball rolling in a straight line. If its momentum is given to be 16 kg.m/sec, we are to find its velocity.
For this, we will use the formula of momentum.
<em>Momentum = mass × velocity</em>
16 = 800 × velocity
Velocity = 16/800 = 0.02 meter per second
Stop using it all the time for some useless things.