
As long as the equation in question can be expressed as the sum of the three equations with known enthalpy change, its
can be determined with the Hess's Law. The key is to find the appropriate coefficient for each of the given equations.
Let the three equations with
given be denoted as (1), (2), (3), and the last equation (4). Let
,
, and
be letters such that
. This relationship shall hold for all chemicals involved.
There are three unknowns; it would thus take at least three equations to find their values. Species present on both sides of the equation would cancel out. Thus, let coefficients on the reactant side be positive and those on the product side be negative, such that duplicates would cancel out arithmetically. For instance,
shall resemble the number of
left on the product side when the second equation is directly added to the third. Similarly
Thus
and

Verify this conclusion against a fourth species involved-
for instance. Nitrogen isn't present in the net equation. The sum of its coefficient shall, therefore, be zero.

Apply the Hess's Law based on the coefficients to find the enthalpy change of the last equation.

The circulatory system moves blood in our bodies. The blood can move oxygen and nutrients to our muscles and limbs. The heartbeat pushes the blood, and the blood cells carry glucose.
Answer: I think it's a don't blame me if it's wrong though
Explanation:
Answer:
(a) Ethyl acetate and hexane, and (c) methanol and methylene chloride.
Explanation:
re-crystallization is a technique used to purify solid compound. Ethyl acetate and hexane are good solvent pair for recrystallization because they are miscible with each other due to their good differences in polarity. ethyl acetate has polarity of 77 while hexane has 68.
water and diethyl ether are not good solvent pair for recrystallization because water and diethyl ether are immiscible. They have very far polarity values. water has 100 while diethyl ether has 35