Answer:
coupling is in tension
Force = -244.81 N
Explanation:
Diameter of Hose ( D1 ) = 35 mm
Diameter of nozzle ( D2 ) = 25 mm
water gage pressure in hose = 510 kPa
stream leaving the nozzle is uniform
exit speed and pressure = 32 m/s and atmospheric
<u>Determine the force transmitted by the coupling between the nozzle and hose </u>
attached below is the remaining part of the detailed solution
Inlet velocity ( V1 ) = V2 ( D2/D1 )^2
= 32 ( 25 / 35 )^2
= 16.33 m/s
Answer:
DIAMETER = 9.797 m
POWER = 
Explanation:
Given data:
circular windmill diamter D1 = 8m
v1 = 12 m/s
wind speed = 8 m/s
we know that specific volume is given as

where v is specific volume of air
considering air pressure is 100 kPa and temperature 20 degree celcius

v = 0.8409 m^3/ kg
from continuity equation





mass flow rate is given as


the power produced ![\dot W = \dot m \frac{ V_1^2 - V_2^2}{2} = 717.3009 [\frac{12^2 - 8^2}{2} \times \frac{1 kJ/kg}{1000 m^2/s^2}]](https://tex.z-dn.net/?f=%5Cdot%20W%20%3D%20%5Cdot%20m%20%5Cfrac%7B%20V_1%5E2%20-%20V_2%5E2%7D%7B2%7D%20%3D%20717.3009%20%5B%5Cfrac%7B12%5E2%20-%208%5E2%7D%7B2%7D%20%5Ctimes%20%5Cfrac%7B1%20kJ%2Fkg%7D%7B1000%20m%5E2%2Fs%5E2%7D%5D)

Answer:
3.115×
meter
Explanation:
hall-petch constant for copper is given by
=25 MPa
k=0.12 for copper
now according to hall-petch equation
=
+
240=25+
D=3.115×
meter
so the grain diameter using the hall-petch equation=3.115×
meter
Answer:
A working with machinery be a common type of caught-in and caught-between hazard is described below in complete detail.
Explanation:
“Caught in-between” accidents kill mechanics in a variety of techniques. These incorporate cave-ins and other hazards of tunneling activity; body parts extracted into unconscious machinery; reaching within the swing range of cranes and other installation material; caught between machine & fixed objects.