Answer:
The shortest distance d to the edge of the plate is 66.67 mm
Concepts and reason
Moment of a force:
Moment of a force refers to the propensity of the force to cause rotation on the body it acts upon. The magnitude of the moment can be determined from the product of force’s magnitude and the perpendicular distance to the force.
Moment(M) = Force(F)×distance(d)
Moment of inertia ( I )
It is the product of area and the square of the moment arm for a section about a reference. It is also called as second moment of inertia.
First prepare the free body diagram of sectioned plate and apply moment equilibrium condition and also obtain area and moment of inertia of rectangular cross section. Finally, calculate the shortest distance using the formula of compressive stress (σ) in combination of axial and bending stress
Solution and Explanation:
[Find the given attachments]
Answer:
(B) FALSE
Explanation:
view factor
depends on the surface emissivity and the surface of geometry view factor is the term used in radiative heat transfer. View factor is depends upon the radiation which leave the surface and strike the surface.View factor is also called shape factor configuration factor it is denoted by 
Answer:
the elongation of the metal alloy is 21.998 mm
Explanation:
Given the data in the question;
K = σT/ (εT)ⁿ
given that metal alloy true stress σT = 345 Mpa, plastic true strain εT = 0.02,
strain-hardening exponent n = 0.22
we substitute
K = 345 / 
K = 815.8165 Mpa
next, we determine the true strain
(εT) = (σT/ K)^1/n
given that σT = 412 MPa
we substitute
(εT) = (412 / 815.8165 )^(1/0.22)
(εT) = 0.04481 mm
Now, we calculate the instantaneous length
= 
given that
= 480 mm
we substitute
=
× 
= 501.998 mm
Now we find the elongation;
Elongation = 
we substitute
Elongation = 501.998 mm - 480 mm
Elongation = 21.998 mm
Therefore, the elongation of the metal alloy is 21.998 mm
Answer:
you never mentioned the options