Answer:
38987000
Explanation:
there are 1000 ml in a Liter.
Hope this helps!
Answer:
Solar energy absorbed at Earth’s surface is radiated back into the atmosphere as heat. As the heat makes its way through the atmosphere and back out to space, greenhouse gases absorb much of it. Why do greenhouse gases absorb heat? Greenhouse gases are more complex than other gas molecules in the atmosphere, with a structure that can absorb heat. They radiate the heat back to the Earth's surface, to another greenhouse gas molecule, or out to space.
There are several different types of greenhouse gases. The major ones are carbon dioxide, water vapor, methane, and nitrous oxide. These gas molecules all are made of three or more atoms. The atoms are held together loosely enough that they vibrate when they absorb heat. Eventually, the vibrating molecules release the radiation, which will likely be absorbed by another greenhouse gas molecule. This process keeps heat near the Earth’s surface. Most of the gas in the atmosphere is nitrogen and oxygen, which cannot absorb heat and contribute to the greenhouse effect.
Explanation:
Answer:
<em>When salt is dissolved in water</em>, many physical properties change, among them the so called colligative properties:
- The vapor pressure of water decreases,
- The boiling point increases,
- The freezing point decreases, and
- Osmotic pressure appears.
Explanation:
Colligative properties are the physical properties of the solvents whose change is determined by the number of particles (moles or ions) of the solute added.
The colligative properties are: vapor pressure, boiling point, freezing point, and osmotic pressure.
<u>Vapor pressure</u>:
The vapor pressure is the pressure exerted by the vapor of a lquid over its surface, in a closed vessel.
The vapor pressure increases when a solute is added, because the presence of the solute causes less solvent molecules to be near the surface ready to escape to the vapor phase, which means that the vapor pressure is lower.
<u>Boiling point</u>:
The boiling point is the temperature at which the vapor pressure of the liquid equals the atmospheric pressure. Since we have seen that the vapor pressure of water decreases when a solute occupies part of the surface, now more temperature will be required for the water molecules reach the atmospheric pressure. So, the boiling point increases when salt is dissolved in water.
<u>Freezing point</u>:
The freezing point is the temperarute at which the vapor pressure of the liquid and the solid are equal. Since, the vapor pressure of water with salt is lower than that of the pure water, the vapor pressure of the liquid and solid with salt will be equal at a lower temperature. Hence, the freezing point is lower (decreases).
<u>Osmotic pressure</u>:
Osmotic pressure is the additional pressure that must be exerted over a solution to make that the vapor pressure of the solvent in the solution equals the vapor pressure of the pure solvent. This additional pressure is proportional to the concentration of the solute: the higher the salt concentration the higher the osmotic pressure.
Answer:
8
Explain
H: Ignoring the coefficient, we know there's 5+3=8 atoms