Answer: The 1 kg fragment will have three times the speed of the 3kg fragment.
Explanation:Here for the bomb, its chemical energy gets converted into the mechanical energy.
According to the law of conservation of momentum, the two bodies will have equal momentum and to satisfy this condition the lighter mass will have the higher velocity.
∵ momentum, p = mass × velocity
∴The 1 kg fragment will have three times the speed of the 3kg fragment.
The force that keeps the puck moving is 0.25 N while the velocity of the puck is 3.7 m/s.
<h3>What is the centripetal force?</h3>
We know that the centripetal force is the force that acts on a body that is moving along a circular path. In this case, we are told that the puck is moving along a circular path hence it is acted upon by the centripetal force that acts on it.
The centripetal force in this case would be supplied by the weight of the object that is moving in the circular path. Thus we can write in our equation that;
Centripetal force = Weight of object = mg
m = mass of the object
g = acceleration due to gravity
Then;
W = 0.026 Kg * 9.8 m/s^2
W = 0.25 N
To obtain the velocity of the object;
FT = mv^2/r
v = √ FT r/m
v = √0.25 * 1.4/0.026
v = 3.7 m/s
Learn more about centripetal force:brainly.com/question/11324711
#SPJ1
The pressure value is given by the equation,

Where,
represents the density of the liquid
g= gravity
h= Heigth
A) For the measurement of the guage pressure we have the data data,



Replacing we get,

P_g = 12395Pa[/tex]
In order to find the Absolute pressure, we perform a sum between the atmospheric pressure and that of the Gauge,
B) The atmospheric pressure at sea level is 101325Pa, assuming ideal conditions, we will take this pressure for our calculation, so

Answer:
252J
Explanation:
Given parameters:
Distance = 72m
Force = 3.5N
Unknown:
Work done on the house = ?
Solution:
Work done is the force applied to move a body through a particular distance.
Work done = Force x distance
Now insert the parameters and solve;
Work done = 3.5 x 72 = 252J