Water's specific heat capacity is 4200 J/Kg°C
95-28=67
72.5grams in kg is 0.0725kg
Energy = 67×0.0725×4200
Energy = 20,401.5 J or 20.4015 kJ
Answer:
The minimum molecular weight of the enzyme is 29.82 g/mol
Explanation:
<u>Step 1:</u> Given data
The volume of the solution = 10 ml = 10*10^-3L
Molarity of the solution = 1.3 mg/ml
moles of AgNO3 added = 0.436 µmol = 0.436 * 10^-3 mmol
<u>Step 2:</u> Calculate the mass
Density = mass/ volume
1.3mg/mL = mass/ 10.0 mL
mass = 1.3mg/mL *10.0 mL = 13mg
<u>Step 3:</u> Calculate minimum molecular weight
Molecular weight = mass of the enzyme / number of moles
Molecular weight of the enzyme = 13mg/ 0.436 * 10^-3 mmol
Molecular weight = 29.82 g/mole
The minimum molecular weight of the enzyme is 29.82 g/mol
B.
And maybe put your question in the English/Literature tag next time lol
Answer:
see notes below
Explanation:
The mole is the mass of substance containing 1 Avogadro's Number of particles. That is, 1 mole substance = 1 formula weight. For elements, 1 mole weight is equal to the atomic weight expressed as grams. For molecules, 1 mole weight is equal to the molecular weight expressed as grams.
1 mole = 1 formula weight
<u>Moles to Grams and Grams to Moles</u>
Grams => Moles
Given grams, moles = mass given / formula weight
*Ask the question => How many formula weights are there in the given mass? => Results is always moles.
Moles => Grams
Given moles, grams = moles given X formula weight
*Summary
Grams to Moles => divide by formula weight
Moles to Grams => multiply by formula weight
The sun affects the movement of global winds by heating up the water at Equator