Answer:
3136 Joules
Explanation:
Applying,
P.E = mgh.............. Equation 1
Where P.E = potential energy, m = mass of the cinder block, h = height of the platform, g = acceleration due to gravity.
From the question,
Given: m = 16 kg, h = 20 m
Constant: g = 9.8 m/s²
Substitute these values into equation 1
P.E = 16(20)(9.8)
P.E = 3136 Joules
Hence the potential energy of the cinder block is 3136 Joules
Titty milk I think because it taste amazing so you can go 21km/h
Answer:
so rate constant is 4.00 x 10^-4 
Explanation:
Given data
first-order reactions
85% of a sample
changes to propene t = 79.0 min
to find out
rate constant
solution
we know that
first order reaction are
ln [A]/[A]0 = -kt
here [A]0 = 1 and (85%) = 0.85 has change to propene
so that [A] = 1 - 0.85 = 0.15.
that why
[A] / [A]0= 0.15 / 1
[A] / [A]0 = 0.15
here t = (79) × (60s/min) = 4740 s
so
k = - {ln[A]/[A]0} / t
k = -ln 0.15 / 4740
k = 4.00 x 10^-4 
so rate constant is 4.00 x 10^-4 
Answer:
Personally I think, that the answer is B.
Explanation: