Solution of 0.25 M is prepared in two steps,
1) Calculate Amount of Solute:
Molar Mass of Solute: 342.3 g/mol
As we know,
Molarity = Moles / 1 dm³
or,
Moles = Molarity × 1 dm³
Putting Values,
Moles = 0.25 mol.dm⁻³ × 1 dm³
Moles = 0.25 moles
Now, find out mass of sucrose,
As,
Moles = Mass / M.mass
or,
Mass = Moles × M.mass
Putting Values,
Mass = 0.25 mol × 342.3 g.mol⁻¹
Mass = 85.57 g
2) Prepare Solution:
Take Volumetric flask and add 85.57 g of sucrose in it. Then add distilled water up to the mark of 1 dm³. Shake well! The solution prepared is 0.25 M in 1 Liter.
Ah , a cup of hot chocolate is alot of chocolate. Im gonna drool ; )
Well , heat flows from an area of high temperature to an area of low temperature. Here , hot chocolate has the high temp , and the surrounding has a room temp. So , the heat from the hot chocolate will dissipate into the surroundings and create a thermal equilibrium. So youre right.
Answer:
Final concentration of C at the end of the interval of 3s if its initial concentration was 3.0 M, is 3.06 M and if the initial concentration was 3.960 M, the concentration at the end of the interval is 4.02 M
Explanation:
4A + 3B ------> C + 2D
In the 3s interval, the rate of change of the reactant A is given as -0.08 M/s
The amount of A that has reacted at the end of 3 seconds will be
0.08 × 3 = 0.24 M
Assuming the volume of reacting vessel is constant, we can use number of moles and concentration in mol/L interchangeably in the stoichiometric balance.
From the chemical reaction,
4 moles of A gives 1 mole of C
0.24 M of reacted A will form (0.24 × 1)/4 M of C
Amount of C formed at the end of the 3s interval = 0.06 M
If the initial concentration of C was 3 M, the new concentration of C would be (3 + 0.06) = 3.06 M.
If the initial concentration of C was 3.96 M, the new concentration of C would be (3.96 + 0.06) = 4.02 M
Answer:
14/6
Explanation:
U 2 can help me by marking as brainliest........
Answer: Sugar
Explanation: Because after photosynthesis (Carbon dioxide, water, and sunlight) react, they make two products. Glucose (A sugar) and Oxygen.