1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
malfutka [58]
3 years ago
12

BRAINLIESTTT ASAP!! PLEASE HELP ME :)

Chemistry
2 answers:
ozzi3 years ago
4 0

the instrument used to measure the volume of a liquid, mass, length, and density is a graduated cylinder

the main 3 units of measurement in the metric system are meters, grams, and liters

Arada [10]3 years ago
4 0

The instrument used to measure the volume of a liquid is a graduated cylinder i believe.

The ones i know are:

Work: Joules

Power: Watts

Force: Newtons

Time: Usually Secs

Distance: Usually meters

You might be interested in
A mothball, composed of naphthalene (c10h8), has a mass of 1.64 g . part a how many naphthalene molecules does it contain?
OLga [1]
The molar mass of Naphthalene is 128g/mol
Therefore; a mass of 1.64 g of Naphthalene contains'
   = 1.64g/128 g
    = 0.0128 moles
But, from the Avogadro's law 1 mole of a substance contains 6.022 × 10^23 particles
Therefore 1 mole of Naphthalene contains 6.022×10^23 molecules
Hence; 0.0128 moles × 6.022 ×10^23 molecules
          = 7.716 × 10^21 molecules
3 0
2 years ago
Are solar and lunar eclipses processed by the movements of the Earth and moon?
Inga [223]

Explanation:

As the Earth rotates on its axis and revolves around the Sun, several different effects are produced. When the new moon comes between the Earth and the Sun along the ecliptic, a solar eclipse is produced. When the Earth comes between the full moon and the Sun along the ecliptic, a lunar eclipse occurs.

7 0
2 years ago
Read 2 more answers
3. After 7.9 grams of sodium are dropped into a bathtub full of water, how many grams of hydrogen gas are released?
Pavel [41]

Answer:

3) About 0.35 grams of hydrogen gas.

4) About 65.2 grams of aluminum oxide.

Explanation:

Question 3)

We are given that 7.9 grams of sodium is dropped into a bathtub of water, and we want to determine how many grams of hydrogen gas is released.

Since sodium is higher than hydrogen on the activity series, sodium will replace hydrogen in a single-replacement reaction for sodium oxide. Hence, our equation is:

\displaystyle \text{Na} + \text{H$_2$O}\rightarrow \text{Na$_2$O}+\text{H$_2$}

To balance it, we can simply add another sodium atom on the left. Hence:

\displaystyle 2\text{Na} + \text{H$_2$O}\rightarrow \text{Na$_2$O}+\text{H$_2$}

To convert from grams of sodium to grams of hydrogen gas, we can convert from sodium to moles of sodium, use the mole ratios to find moles in hydrogen gas, and then use hydrogen's molar mass to find its amount in grams.

The molar mass of sodium is 22.990 g/mol. Hence:

\displaystyle \frac{1\text{ mol Na}}{22.990 \text{ g Na}}

From the chemical equation, we can see that two moles of sodium produce one mole of hydrogen gas. Hence:

\displaystyle \frac{1\text{ mol H$_2$}}{2\text{ mol Na}}

And the molar mass of hydrogen gas is 2.016 g/mol. Hence:

\displaystyle \frac{2.016\text{ g H$_2$}}{1\text{ mol H$_2$}}

Given the initial value and the above ratios, this yields:

\displaystyle 7.9\text{ g Na}\cdot \displaystyle \frac{1\text{ mol Na}}{22.990 \text{ g Na}}\cdot \displaystyle \frac{1\text{ mol H$_2$}}{2\text{ mol Na}}\cdot \displaystyle \frac{2.016\text{ g H$_2$}}{1\text{ mol H$_2$}}

Cancel like units:

=\displaystyle 7.9\cdot \displaystyle \frac{1}{22.990}\cdot \displaystyle \frac{1}{2}\cdot \displaystyle \frac{2.016\text{ g H$_2$}}{1}

Multiply. Hence:

=0.3463...\text{ g H$_2$}

Since we should have two significant values:

=0.35\text{ g H$_2$}

So, about 0.35 grams of hydrogen gas will be released.

Question 4)

Excess oxygen gas is added to 34.5 grams of aluminum and produces aluminum oxide. Hence, our chemical equation is:

\displaystyle \text{O$_2$} + \text{Al} \rightarrow \text{Al$_2$O$_3$}

To balance this, we can place a three in front of the oxygen, four in front of aluminum, and two in front of aluminum oxide. Hence:

\displaystyle3\text{O$_2$} + 4\text{Al} \rightarrow 2\text{Al$_2$O$_3$}

To convert from grams of aluminum to grams of aluminum oxide, we can convert aluminum to moles, use the mole ratios to find the moles of aluminum oxide, and then use its molar mass to determine the amount of grams.

The molar mass of aluminum is 26.982 g/mol. Thus:

\displaystyle \frac{1\text{ mol Al}}{26.982 \text{ g Al}}

According to the equation, four moles of aluminum produces two moles of aluminum oxide. Hence:

\displaystyle \frac{2\text{ mol Al$_2$O$_3$}}{4\text{ mol Al}}

And the molar mass of aluminum oxide is 101.961 g/mol. Hence: \displaystyle \frac{101.961\text{ g Al$_2$O$_3$}}{1\text{ mol Al$_2$O$_3$}}

Using the given value and the above ratios, we acquire:

\displaystyle 34.5\text{ g Al}\cdot \displaystyle \frac{1\text{ mol Al}}{26.982 \text{ g Al}}\cdot \displaystyle \frac{2\text{ mol Al$_2$O$_3$}}{4\text{ mol Al}}\cdot \displaystyle \frac{101.961\text{ g Al$_2$O$_3$}}{1\text{ mol Al$_2$O$_3$}}

Cancel like units:

\displaystyle= \displaystyle 34.5\cdot \displaystyle \frac{1}{26.982}\cdot \displaystyle \frac{2}{4}\cdot \displaystyle \frac{101.961\text{ g Al$_2$O$_3$}}{1}

Multiply:

\displaystyle = 65.1852... \text{ g Al$_2$O$_3$}

Since the resulting value should have three significant figures:

\displaystyle = 65.2 \text{ g Al$_2$O$_3$}

So, approximately 65.2 grams of aluminum oxide is produced.

5 0
2 years ago
Read 2 more answers
What are the four types of biological molecules and their main function in the human body?
Flauer [41]

Answer:

There are four major classes of biological macromolecules (carbohydrates, lipids, proteins, and nucleic acids)

Explanation:

There are four major classes of biological macromolecules (carbohydrates, lipids, proteins, and nucleic acids), and each is an important component of the cell and performs a wide array of functions. ... Biological macromolecules are organic, meaning that they contain carbon.

7 0
3 years ago
Which of the following best explains why solids do not change
Lesechka [4]

Answer: The particles in a solid are packed very close to each other.

8 0
3 years ago
Other questions:
  • Most metals are solid at room temperature, malleable, ductile, good conductors of heat and electricity, and react in acids to pr
    7·2 answers
  • The answers to the worksheet
    12·1 answer
  • When 100 mL of 1.0 M Na3PO4 is mixed with 100 mL of 1.0 M AgNO3, a yellow precipitate forms and [Ag ] becomes negligibly small.
    15·1 answer
  • 1.) A balloon contains 0.126 mol of gas and has a volume of 2.74 L .
    8·1 answer
  • Which option should a person avoid doing in order to better protect the quality of watersheds?
    15·1 answer
  • All mutations _____.
    6·1 answer
  • Find each product 64x100
    11·2 answers
  • Which of the following would increase the surface area of a solid so that it dissolves faster?
    10·1 answer
  • 2. Which is true of all elements?
    8·1 answer
  • Helpppppppp meeeeeee
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!