1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
V125BC [204]
3 years ago
11

Please help i need to finish this test in lest than an hour

Mathematics
1 answer:
In-s [12.5K]3 years ago
5 0

Answer:

−

k

2

2

+

3

k

3

4

Step-by-step explanation:

You might be interested in
Please help with this question!! I need serious help!!
Marysya12 [62]

Answer:

D) It is doubled

Step-by-step explanation:

Regardless of the side length, if the area of a square is quadrupled, the side lengths get doubled, as shown in the diagram. If all of the side lengths are doubled, that means the perimeter is also doubled.

8 0
3 years ago
Redondear a 100,000 el numero 5,370,288
Softa [21]

Para redondear este número a 1,000, verifiquemos el tercer dígito del número.

Si el dígito es mayor que 5, aumentamos el siguiente número en 1 unidad.

Si el dígito es menor o igual a 5, mantenemos el siguiente número.

El tercer dígito es 3, por lo que el número redondeado es:

25,000

6 0
1 year ago
Which of the following is the graph of y=x+3
grin007 [14]

Answer:ITS THE SECOND ONE

Step-by-step explanation:

5 0
2 years ago
I need help solving this problem. <img src="https://tex.z-dn.net/?f=4x%20cos%20%5E%7B-1%7D%20%282x%2B4%29-%20%5Csqrt%7B3-3%20x%5
Gnesinka [82]
Given:
f(x)=4xcos^{-1}(2x+4)-\sqrt{3-3x^2}

Using
\frac{d}{dx}cos^{-1}(x)=-\frac{1}{\sqrt{1-x^2}}
we derive
\frac{d}{dx}4xcos^{-1}(2x+4)
=4cos^{-1}(2x+4)-\frac{8x}{\sqrt{1-(2x+4)^2}}

Similarly, using
\frac{d}{dx}\sqrt{x}=\frac{1}{2\sqrt{x}}
we derive
\frac{d}{dx}(-\sqrt{3-3x^2})
=\frac{3x}{\sqrt{3-3x^2}}

Therefore, the derivative is
f'(x)=\frac{d}{dx}(4xcos^{-1}(2x+4)-\sqrt{3-3x^2})
=4cos^{-1}(2x+4)-\frac{8x}{\sqrt{1-(2x+4)^2}}+\frac{3x}{\sqrt{3-3x^2}}
3 0
3 years ago
Read 2 more answers
Find the average rate of change between f(-7) and f(-1) in the function f(x)=x^2+2x -8
Levart [38]

Answer:

- 6

Step-by-step explanation:

The average rate of change of f(x) in the closed interval [ a, b ] is

\frac{f(b)-f(a)}{b-a}

here [ a, b ] = [ - 7, - 1 ]

f(b) = f(- 1) = (- 1)² + 2(- 1) - 8 = 1 - 2 - 8 = - 9

f(a) = f(- 7) = (- 7)² + 2(- 7) - 8 = 49 - 14 - 8 = 27

Hence

average rate of change = \frac{-9-27}{-1-(-7)} = \frac{-36}{6} = - 6

4 0
3 years ago
Other questions:
  • The graph represents function 1, and the equation represents function 2:
    14·2 answers
  • Two chemicals A and B are combined to form a chemical C. The rate, or velocity, of the reaction is proportional to the product o
    13·1 answer
  • How you divided numbers
    15·1 answer
  • Which inequality corresponds<br>to the following graph?​
    7·1 answer
  • Is this the correct graphing for the inequality 2c&lt;=100?<br> i’ll mark brainliest please help!!!
    8·1 answer
  • Can someone help me out
    15·2 answers
  • This is 7th grade math so pls answer asap<br><br><br>1: v/8=2<br><br>2:16=k/11<br><br>3:18+m=8
    13·1 answer
  • I need help!!! BRAINLIST IF CORRECT! THIS IS DUE TODAY! ​
    13·1 answer
  • I tought of a number double it then added 3. The result multiplied by 4 came to 52,what was the number I tought of? ​
    10·2 answers
  • Which equation represents a line which is perpendicular to the line x – 2y = -14?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!