Answer:
The carbons of the acetyl group oxidize which generate CO2, and in turn H2O.
Explanation:
The pyruvic acid that is generated during glycolysis enters the mitochondria. Inside this organelle, the acid molecules undergo a process called oxidative decaborxylation in which an enzyme of several cofactors is involved, one of which is coenzyme A. Pyruvic acid is transformed into an acetyl molecule and these are been introduced to the begining of the Krebs Cycle where the acetyl-group (2C) from acetyl-CoA is transferred to oxaloacetate (4C) to produce citrate (6C). As the molecule cycles the two carbons of the acetyl oxidize and are released in the form of CO2. Then the energy of the Krebs cycle becomes sufficient to reduce three NAD +, which means that three NADH molecules are formed. Although a small portion of energy is used to generate ATP, most of it is used to reduce not only the NAD + but also the FAD which, if oxidized, passes to its reduced state, FADH2
Delta S reaction= Delta S products- Delta S reactants
don't forget to mulitiply by coefficients
also
here is a really slow way to do it
you know the moles of gas increased
so Delta S is positive
so its B or D
then just do the units digit to see which one match up
1) it explains about stability of an atom by including stationary state.
2) it explains tge quantization of energy.
3) it gives the concept of angular momentum of a revolving electron.
Answer:
Homogeneous - With a uniform appearance
Heterogeneous - With visible differences in the mixture
Explanation:
Referring to mixtures, homogeneous looks the same throughout, while heterogeneous has particles or whatnot.
Basically:
Homo means same
Hetero means different
The answer should be hydrogen bonding. Water only has oxygen and hydrogen in it, which are both nonmetals, so you know the answer cannot be metallic or ionic. It also cannot be nonpolar because the electronegativity of the oxygens will make the molecule polar. You can also know it is hydrogen bonding because it can only take place when a hydrogen is attached to an oxygen, fluorine, or nitrogen. These bonds are very strong attractions, so the molecules are extremely hard to pull apart, creating a high boiling point. Hope that helps!