Answer:
2914 J
Explanation:
Step 1: Given data
- Mass of the copper tubing (m): 665.0 g
- Initial temperature: 15.71 °C
- Final temperature: 27.09 °C
- Specific heat of copper (c): 0.3850 J/g.°C
Step 2: Calculate the temperature change
ΔT = 27.09 °C - 15.71 °C = 11.38 °C
Step 3: Calculate the energy required (Q)
We will use the following expression.
Q = c × m × ΔT
Q = 0.3850 J/g.°C × 665.0 g × 11.38 °C
Q = 2914 J
Answer:
Hcl
Explanation:
Arrhenius acid - produce H+
Arrhenius base - produce oh -
we can see here in the option B give us H+ which is arrhenius acid
Answer:
A
Explanation:
The solubility of a substance is directly proportional to the temperature. It means that solubility will increase with the increases in temperature. At higher temperature, the kinetic energy increased that allow the solvent molecules to break the solute particles more effectively.
Substance A has a higher solubility because the weight of substance A measured at the end of the experiment is less than the weight of substance B.
Hence, the correct answer is A.
This is false because it doesn't matter about the mass
A catalyst is when a chemical reaction occurs faster than normal.
The system is unaffected during a catalyst because both forward and reverse reactions are affected, meaning that quilibrium will occur faster nothing will change.
Hope it helped,
BioTeacher101