Insulators are the poorest conductor of energy
It depends on if it is a sound wave or light wave
Answer:
a) x = 1.5 *10⁻⁴cos(524πt) m
b) v = -1.5 *10⁻⁴(524π)sin(524πt) m/s
a = -1.5 *10⁻⁴(524π)²cos(524πt) m/s²
c) x(1) = 1.5 *10⁻⁴ m = 1.5 *10⁻1 mm
x(0.001) = -1.13*10⁻⁵ m = -1.13*10⁻² mm
Explanation:
x = Acos(ωt)
ω = 2πf = 2π(262) = 524π rad/s
x = 1.5 *10⁻⁴cos(524πt)
v = y' = -Aωsin(ωt)
v = -1.5 *10⁻⁴(524π)sin(524πt)
a = v' = -Aω²cos(ωt)
a = -1.5 *10⁻⁴(524π)²cos(524πt)
not sure about the last part as time is generally not given in mm
I will show at 1 second and at 0.001 s to try to cover bases
x(1) = 1.5 *10⁻⁴cos(524π(1))
x(1) = 1.5 *10⁻⁴cos(524π)
x(1) = 1.5 *10⁻⁴(1)
x(1) = 1.5 *10⁻⁴ m = 1.5 *10⁻1 mm
x(0.001) = 1.5 *10⁻⁴cos(524π(0.001))
x(0.001) = 1.5 *10⁻⁴cos(0.524π)
x(0.001) = 1.5 *10⁻⁴(-0.0753268)
x(0.001) = -1.129902...*10⁻⁵ m
x(0.001) = -1.13*10⁻⁵ m = -1.13*10⁻² mm
Answer:
Angular acceleration, 
Explanation:
It is given that,
Displacement of the rotating wheel, 
Time taken, t = 2.9 s
Initial speed of the wheel, 
Final speed of the wheel, 
Let
is the angular acceleration of the wheel. Using the third equation of kinematics to find it as :



So, the angular acceleration of the wheel is
. Hence, this is the required solution.
Answer:
The unrealistically large acceleration experienced by the space travelers during their launch is 2.7 x 10⁵ m/s².
How many times stronger than gravity is this force? 2.79 x 10⁴ g.
Explanation:
given information:
s = 220 m
final speed, vf = 10.97 km/s = 10970 m/s
g = 9.8 m/s²
he unrealistically large acceleration experienced by the space travelers during their launch
vf² = v₀²+2as, v₀ = 0
vf² = 2as
a =vf²/2s
= (10970)²/(2x220)
= 2.7 x 10⁵ m/s²
Compare your answer with the free-fall acceleration
a/g = 2.7 x 10⁵/9.8
a/g = 2.79 x 10⁴
a = 2.79 x 10⁴ g