This question is missing the part that actually asks the question. The questions that are asked are as follows:
(a) How much of a 1.00 mg sample of americium remains after 4 day? Express your answer using 2 significant figures.
(b) How much of a 1.00 mg sample of iodine remains after 4 days? Express your answer using 3 significant figures.
We can use the equation for a first order rate law to find the amount of material remaining after 4 days:
[A] = [A]₀e^(-kt)
[A]₀ = initial amount
k = rate constant
t = time
[A] = amount of material at time, t.
(a) For americium we begin with 1.00 mg of sample and must convert time to units of years, as our rate constant, k, is in units of yr⁻¹.
4 days x 1 year/365 days = 0.0110
A = (1.00)e^((-1.6x10^-3)(0.0110))
A = 1.0 mg
The decay of americium is so slow that no noticeable change occurs over 4 days.
(b) We can simply plug in the information of iodine-125 and solve for A:
A = (1.00)e^(-0.011 x 4)
A = 0.957 mg
Iodine-125 decays at a much faster rate than americium and after 4 days there will be a significant loss of mass.
The type of charge an electron carries is B negative
Answer:It is necessary to use Kelvin for the temperature and it is conventional to use the SI unit of liters for the volume.
Explanation:
However, pressure is commonly measured in one of three units: kPa, atm, or mmHg. Therefore, can have three different values.
<span>The magnetic field of the Earth serves a useful purpose in deflecting Solar radiation. Without the magnetic field there is much more charged-particle radiation striking the surface. The auroras would occur everywhere instead of at the magnetic poles. Compass needles wouldn't work, and then they would flip direction.. The magnetic field IS DECREASING and could go to zero and reverse sometime in the next few tens-of-thousands of years.</span>
Answer : The molecular weight of a gas is, 128.9 g/mole
Explanation : Given,
Density of a gas = 5.75 g/L
First we have to calculate the moles of gas.
At STP,
As, 22.4 liter volume of gas present in 1 mole of gas
So, 1 liter volume of gas present in
mole of gas
Now we have to calculate the molecular weight of a gas.
Formula used :

Now put all the given values in this formula, we get the molecular weight of a gas.


Therefore, the molecular weight of a gas is, 128.9 g/mole