Answer:
I'm just going to tell you the information you need but not the answer so you can learn from the problem.
Explanation:
So he was at 248 km mark and traveled 99 km to get to the 149km mark. Then he turns around to go back 18 km to the 167 km mark. That is all the information you need to complete the question I recommend drawing it out in your notes.
Answer:
The terminal velocity of the diver is 115 m/s = 414 km/hr
Explanation:
At terminal velocity,
Fnet = mg - Fd = 0
Drag force, Fd = cρAv²/2
mg = cρAv²/2
Terminal Velocity of a body falling through a fluid as in a diver falling through air is given by
v = √(2mg/ρcA)
where m = mass of body falling through fluid = 80 kg
g = acceleration due to gravity = 9.8 m/s²
ρ = density fluid, density of air, as obtained from literature = 1.21 kg/m³
c = coefficient of drag friction of diver falling through air, as obtained from literature = 0.7
A = the area of the diver facing the fluid = 0.14 m²
v = √(2mg/ρcA) = √((2 × 80 × 9.8)/(1.21 × 0.7 × 0.14)) = 115 m/s = 115 × (3600/1000) km/hr = 414 km/hr
Answer:
41.3 m/s^2 option (e)
Explanation:
force, F = 6.81 N
mass, m = 165 g = 0.165 kg
Let a be the acceleration of the puck.
Use newtons' second law
Force = mass x acceleration
6.81 = 0.165 x a
a = 41.27 m/s^2
a = 41.3 m/s^2
Thus, the acceleration of the puck is 41.3 m/s^2.
Answer:
Explanation:
Given
same charge on both masses
potential Energy due to Magnetic Field =Kinetic Energy of Particle
and we know
Force due to magnetic field will Provide centripetal Force
and B is equal for both particles
thus