Answer:
- <em>Oxidation half-reaction</em>:
Fe²⁺(aq) → Fe³⁺(aq) + 1e⁻
- <em>Reduction half-reaction</em>:
Ce⁴⁺(aq) + 1e⁻ → Ce³⁺(aq)
Explanation:
The reaction that takes place is:
- Fe²⁺(aq) + Ce⁴⁺(aq) → Fe³⁺(aq) + Ce³⁺(aq)
The <em>oxidation half-reaction</em> is:
- Fe²⁺(aq) → Fe³⁺(aq) + 1e⁻
It is an oxidation because the oxidation state of Fe increases from 2+ to 3+.
The <em>reduction half-reaction</em> is:
- Ce⁴⁺(aq) + 1e⁻ → Ce³⁺(aq)
It is a reduction because the oxidation state of Ce decreases from 4+ to 3+.
breaking bonds in reactants and forming new bonds in products. Breaking bonds requires energy, and forming bonds releases energy.
The presence of oxidizing acids; heavy-metal salts, sulfur, and ammonia; and a number of sulfur and ammonia compounds can cause corrosion to set in. Water that comes from a well is much more likely to contain these materials and put copper lines in jeopardy—but it can occur in the civic water system as well.
Copper corrodes at insignificant rates when used in areas with unpolluted air, non-oxidizing acids, and water. However, it happens more rapidly with the presence of road salt, ammonia, sulfur, oxidizing acids
Acidic substances react with the surface of copper, causing it to tarnish and corrode almost instantly. This corrosion is highly soluble, leading to the presence of toxic copper salts in the food. This is why it is not recommended to use copper vessels for foods high in acidity, such as milk, wine, or vinegar.
It was empty , dark , and cold