Answer:
Assume that 100 grams of C2H4 is present. This means that there are 85.7 grams of carbon and 14.3 grams of hydrogen.
Convert these weights to moles of each element:
85.7 grams carbon/12 grams per mole = 7 moles of carbon.
14.3 grams hydrogen/1 gram per mole = 14 moles of hydrogen.
Divide by the lowest number of moles to obtain one mole of carbon and two moles of hydrogen.
Since we know that there cannot be a stable CH2 molecule, multiply by two and you have C2H4 which is ethylene - a known molecule.
The secret is to convert the percentages to moles and find the ration of the constituents.
50% - you have two bb pairs
Answer:
f = 3 × 10⁶ Hz
Explanation:
Given data:
Wavelength of wave = 1.0 ×10² m
Frequency = ?
Solution:
Formula:
Speed of light = wavelength× frequency
Frequency = speed of light / wavelength
speed of light = 3× 10⁸ m/s
f = 3× 10⁸ m/s / 1.0 ×10² m
f = 3 × 10⁶ s⁻¹
s⁻¹ = Hz
f = 3 × 10⁶ Hz
Answer : This is not an ideal mixture.
Explanation :
Using Raoult's law :

where,
= total vapor pressure of mixture
= vapor pressure of pure methanol = 256 torr
= vapor pressure of pure water = 55.3 torr
= mole fraction of water = 0.312
= mole fraction of methanol = 1 - 0.312 = 0.688
Now put all the given values in the above formula, we get:



From this we conclude that the total vapor pressure of mixture is less than the total given vapor pressure of 211 torr. That means, the interactions between the methanol and water would be weaker than those between the individual substances. So, this is not an ideal mixture.
Hence, this is not an ideal mixture.
The answer is C
Beta decay occurs when a neutron changes into a proton while emitting an electron