Q = mcΔt, q = energy [J] m = mass (of water) [g]; c = specific heat capacity of water [J g⁻¹ K⁻¹/°C⁻¹]; Δt = change in temperature [K/°C]
Δt = 121 - -24 = 145
q = 39 × 4.18 × 145
q = 23637.9 J
Answer:
80.8 g
Explanation:
First, let's write a balanced equation of this reaction
MgO + 2HNO₃ → Mg(NO₃)₂ + H₂O
Now let's convert grams to moles
We gotta find the weight of MgO
24 + 16 = 40 g/mol
12/40 = 0.3 moles of MgO
We can use this to find out how much Magnesium Nitrate will be formed
0.3 x 1 MgO / 1 Mg(NO₃)₂ = 0.3 moles of Magnesium Nitrate formed
Convert moles to grams
Find the weight of Mg(NO₃)₂ but don't forget that 2 subscript acts as a multiplier of whatever is inside that parenthesis.
24 + 14 x 2 + 16 x 3 x 2 = 148 g/mol
148 x 0.3 = 80.8 g
Density = mass / volume
Density = 7.5 g / 5.0 cm3
Density = 1.5 g/cm3
Here, we should use combined gas law which can be derived from combined gas law, “PV=nRT”. Rearranging, we can get PV/T=nR. Then we can set the two states in the problem together to get
P1V1/T1 = P2V2/T2
Then just plug in and solve algebraically.
Hope this helps