Answer:
Mutualism
Explanation:
A relationship in which both benefit
Of all the substances used, water possesses the strongest intermolecular forces (hydrogen bonds). Although hydrogen bonds exist in glycerin and methylated spirits as well, they are a little weaker than in water.
Intermolecular forces in ch3oh include London dispersion forces, dipole dipole attraction, and hydrogen bonding. Methylated spirits, a common industrial solvent, are mostly made of ethyl alcohol. Because methanol denatures ethyl alcohol, commercial supply is exempt from the typical taxes and charges imposed on alcohol. A quantity of methyl alcohol or phenol is added to make it so that drinking it will make you go blind. Alcohols have the hydrogen bonding and van der Waals intermolecular forces of attraction.
Learn more about hydrogen bonding here-
brainly.com/question/10904296
#SPJ9
Answer:
See Explanation ( = same answer for earlier question)
Explanation:
The Arrhenius acid-base theory defines an acid as a compound which when added into water increases the hydronium ion (H₃O⁺) concentration and the base as a compound which when added into water increases the hydroxide (OH⁻) ion concentration. As such, an acid-base reaction is limited to proton transfer to only OH⁻ ions forming water. Such would imply that all acid-base reactions produce water only in addition to a salt. This is not always the case as conjugate base anions for many substances can receive proton transfer.
Example: The reaction HOAc + NaCN => HCN + OAc- will occur in aqueous media because the proton (H⁺) on acetic acid (HOAc) will transfer to the cyanate ion forming hydrocyanic acid (HCN). Such occurs because the CN⁻ ion is a stronger conjugate base than the acetate ion (OAc⁻) and forms the more stable weak acid. Such is the basis of the Bronsted-Lowry Acid-Base system and states that an acid (proton donor) will transfer its ionizable hydrogen to a conjugate base (proton acceptor) if the transfer forms a weaker acid.
Read more on Brainly.com - brainly.com/question/15316776#readmore