Answer:
The final temperature of sulfur dioxide gas is 215.43 C
Explanation:
Gay Lussac's Law establishes the relationship between the temperature and the pressure of a gas when the volume is constant. This law says that if the temperature increases the pressure increases, while if the temperature decreases the pressure decreases. In other words, the pressure and temperature are directly proportional quantities.
Mathematically, the Gay-Lussac law states that, when a gas undergoes a transformation at constant volume, the quotient of the pressure exerted by the temperature of the gas remains constant:

Assuming you have a gas that is at a pressure P1 and at a temperature T1 at the beginning of the experiment, by varying the temperature to a new value T2, then the pressure will change to P2, and it will be true:

The reference temperature is the absolute temperature (in degrees Kelvin)
In this case:
- P1= 0.450 atm
- T1= 20 C= 293.15 K (being 0 C= 273.15 K)
- P2=0.750 atm
- T2= ?
Replacing:

Solving:


T2=488.58 K
Being 273.15 K= 0 C, then 488.58 K= 215.43 C
<u><em>The final temperature of sulfur dioxide gas is 215.43 C</em></u>
The different state of material based on its ingredients are-
1. Compound: The compound is in which there are more than one molecule in which chemical bond is there.
2. Mixture: It is basically presence of two or more compounds in which there is no chemical bonds.
The mixture may be of two types (i) homogeneous and (ii) Heterogeneous. In the homogeneous mixture there is uniformity of the mixed compound (like air in water) and some chemical process is needed to separate the compounds. Whereas heterogeneous mixtures (like chalk in water) are easily separable by any physical process.
In the root beer which is a soft drink which is obtained in different flavor sometime with caffeine and without caffeine. The unopened bottle of root beer is homogeneous mixture.
Answer:
The mass percent of aluminum sulfate in the sample is 16.18%.
Explanation:
Mass of the sample = 1.45 g

Mass of the precipitate = 0.107 g
Moles of aluminum hydroxide = 
According to reaction, 2 moles of aluminum hydroxide is obtained from 1 mole of aluminum sulfate .
Then 0.001372 moles of aluminum hydroxide will be obtained from:

Mass of 0.000686 moles of aluminum sulfate :
= 0.000686 mol × 342 g/mol = 0.2346 g
The mass percent of aluminum sulfate in the sample:

Answer:
Molecular compounds are pure substances formed when atoms are linked together by sharing of electrons while ionic compounds are formed due to the transfer of electrons.
Molecular compounds are made due to covalent bonding while ionic compounds are made due to ionic bonding.
Explanation: