Answer:
131.5 kJ
Explanation:
Let's consider the following reaction.
CaCO₃(s) → CaO(s) + CO₂(g)
First, we will calculate the standard enthalpy of the reaction (ΔH°).
ΔH° = 1 mol × ΔH°f(CaO(s)) + 1 mol × ΔH°f(CO₂(g)
) - 1 mol × ΔH°f(CaCO₃(s)
)
ΔH° = 1 mol × (-634.9 kJ/mol) + 1 mol × (-393.5 kJ/mol) - 1 mol × (-1207.6 kJ/mol)
ΔH° = 179.2 kJ
Then, we calculate the standard entropy of the reaction (ΔS°).
ΔS° = 1 mol × S°(CaO(s)) + 1 mol × S°(CO₂(g)
) - 1 mol × S°(CaCO₃(s)
)
ΔS° = 1 mol × (38.1 J/mol.K) + 1 mol × (213.8 J/mol.K) - 1 mol × (91.7 J/mol.K)
ΔS° = 160.2 J/K = 0.1602 kJ/K
Finally, we calculate the standard Gibbs free energy of the reaction at T = 25°C = 298 K.
ΔG° = ΔH° - T × ΔS°
ΔG° = 179.2 kJ - 298 K × 0.1602 kJ/K
ΔG° = 131.5 kJ
Answer: the percentage of acetic acid will be low.
Explanation: The major aim during titration of acids and bases is to determine the endpoint , that is exact point where the acid in the beaker changes colour, (in this case, pink )with an additional drop from the burette containing the base, since it is usually difficult to mark the equivalence point that tells us when all the substrate in the beaker has been neutralized completely with the buretted substance.
Overshooting the end point is an error which can occur when the person involved in the the titration accidently goes beyond this endpoint by adding too much of the substance(base) from the burette into the beaker missing the exact endpoint.
This implies that the person has added too much of the burreted liquid, ie the base than required , making the acid in the beaker to continue to react resulting to a lower concentration of the acid (acetic acid) with excess base.(NaOH)
This question can be easily confused with. During the early times, organic compound are directly associated with living beings, people, plants and animals. That is somewhat true. The definition of organic compounds are compounds that contain carbon. So, it is true that most of the compounds in our body are organic. But you may confuse it to the abundance of elements in the body, which is oxygen. However, the most abundant element, besides carbon, in organic compounds is Hydrogen. You will notice this obviously in the organic compounds like alkanes, alkenes, alkynes, carbohydrates, lipids, hormones and proteins. Their general chemical formula usually involves Carbon and Hydrogen.
To balance equations you have to have same number of atoms on both sides of the equation just multiply with a suitable digit
For part 1, just copy them off of the periodic table. For example, element 1 is Hydrogen, and its symbol is H
Elements on the left usually lose electrons and elements on the right tend to gain them. Noble gases have no charge.