Answer:

Explanation:
According to the boiling point elevation law described by the equation
, the increase in boiling point is directly proportional to the van 't Hoff factor.
The van 't Hoff factor for nonelectrolytes is 1, while for ionic substances, it is equal to the number of moles of ions produced when 1 mole of salt dissolves.
would produce 2 moles of ions per 1 mole of dissolved substance, sodium and bromide ions.
is insoluble in water, so it would barely dissociate and wouldn't practically change the boiling point.
would dissociate into 3 moles of ions per 1 mole of substance, two potassium cations and one sulfide anion.
is a gas, it would form some amount of carbonic acid when dissolved, however, carbonic acid is molecular and would yield i value of i = 1.
Therefore, potassium sulfide would raise a liquid's boiling point the most if all concentrations are equal.
Answer: A. True
Explanation:
I'm not all the way sure, so please don't hate on me. I looked it up to double check and it should be true.
!PLEASE NOT HATE IF IT'S WRONG!
The answer is Make sure you are working with a properly balanced chemical equation.
Convert grams of the substance given in the problem to moles.
Construct two ratios - one from the problem and one from the chemical equation and set them equal. ...
Convert moles of the substance just solved for into grams. Step 1: Convert known reactant mass to moles. ...
Step 2: Use the mole ratio to find moles of other reactant. ...
Step 3: Convert moles of other reactant to mass. Balance the equation.
Convert units of a given substance to moles.
Using the mole ratio, calculate the moles of substance yielded by the reaction.
Convert moles of wanted substance to desired units.
NaHCO₃ + HCl → NaCl + H₂O + CO₂
<u>Explanation:</u>
NaHCO₃ + HCl → NaCl + H₂O + CO₂
When Sodium bi carbonate (NaHCO₃) reacts with hydrochloric acid (HCl), it forms table salt (NaCl), water ( H₂O ) and Carbon di oxide (CO₂) gas is evolved.
Here base reacts with acid to form salt and it is the neutralization reaction.
Answer:
<u><em></em></u>
- <u><em>pOH = 0.36</em></u>
Explanation:
Both <em>potassium hydroxide</em> and <em>lithium hydroxide </em>solutions are strong bases, so you assume 100% dissociation.
<u>1. Potassium hydroxide solution, KOH</u>
- Volume, V = 304 mL = 0.304 liter
- number of moles, n = M × V = 0.36M × 0.304 liter = 0.10944 mol
- 1 mole of KOH produces 1 mol of OH⁻ ion, thus the number of moles of OH⁻ is 0.10944
<u>2. LIthium hydroxide, LiOH</u>
- Volume, V = 341 mL = 0.341 liter
- number of moles, n = M × V = 0.341 liter × 0.51 M = 0.17391 mol
- 1mole of LiOH produces 1 mol of OH⁻ ion, thus the number of moles of OH⁻ is 0.17391
<u />
<u>3. Resulting solution</u>
- Number of moles of OH⁻ ions = 0.10944 mol + 0.17391 mol = 0.28335 mol
- Volume of solution = 0.304 liter + 0.341 liter = 0.645 liter
- Molar concentration = 0.28335 mol / 0.645 liter = 0.4393 M
<u />
<u>4. </u><em><u>pOH</u></em>
← answer