Answer:
71.5g
Explanation:
The reaction equation is given as:
C + O₂ → CO₂
Mass of C = 42g
Mass of O₂ = 52g
Unknown:
Mass of CO₂ produced = ?
Solution
Now to solve this problem, we have to find limiting reactant which is the one given in short supply in this reaction.
The extent of the reaction is controlled by this reactant.
Find the number of moles of the given species;
Number of moles =
Number of moles of C =
= 3.5mol
Number of moles of O₂ =
= 1.63mol
Now;
From the balanced reaction equation;
1 mole of C reacted with 1 mole of O₂
We see that C is in excess and O₂ is the limiting reactant.
1 mole of O₂ will produce 1 mole of CO₂
So; 1.63mole of O₂ will produce 1.63 mole of CO₂
Mass of CO₂ = number of moles x molar mass
Molar mass of CO₂ = 44g/mol
Mass of CO₂ = 1.63 x 44 = 71.5g
Step (1):
Generation of electrophile: by the action of Lewis acid FeCl₃ on Cl₂ to serve as a source of Cl⁺ (Electrophile)
Step (2):
Addition of electrophile to form carbocation:
addition of electrophile to form C-Cl bond and form carbocation which is stabilized by resonance.
Step (3):
Loss of proton to re-form the aromatic ring by the action of FeCl₄⁻ which removes proton from carbon containing Cl and forming the aromatic ring again
Answer:
Cr (HSO4)3
Explanation:
its molecular weight is 343.20 g/mol
its molecular formula can also be written as CrH3O12S3
molar mass of Cr (HSO4)3 can be calculated by following method;
atomic mass of Cr = 51.9961 u
atomic mass of H = 1 u
atomic mass of S = 32.065 u
atomic mass of O = 16 u
molar mass of Cr(HSO4)3 = 51.9961+ 1.00784×3 + 32.065×3 + 15.999×12
molar mass of Cr(HSO4)3 =51.9961+3.02352+96.195+ 191.988
molar mass of Cr(HSO4)3 = 343.20 g/mol
<span>Li has fewer electrons than Li+ (protons can't change)
</span>
A displacement reaction will occur from the system given above. The chlorine molecules will displace the bromide ions in the solution of sodium bromide. The reaction will yield to sodium chloride and bromine. The reaction will be:
2NaBr + Cl2 = 2NaCl + Br2