Answer:
Since the nearsighted eye over converges light rays, the correction for nearsightedness is to place a diverging spectacle lens in front of the eye. This reduces the power of an eye that is too powerful.
Explanation:
The magnitude of <em>electrical</em> force on charge
due to the others is 0.102 newtons.
<h3>
How to calculate the electrical force experimented on a particle</h3>
The vector <em>position</em> of each particle respect to origin are described below:
![\vec r_{1} = (-0.500, 0)\,[m]](https://tex.z-dn.net/?f=%5Cvec%20r_%7B1%7D%20%3D%20%28-0.500%2C%200%29%5C%2C%5Bm%5D)
Then, distances of the former two particles particles respect to the latter one are found now:
![\vec r_{13} = (+0.500, +0.500)\,[m]](https://tex.z-dn.net/?f=%5Cvec%20r_%7B13%7D%20%3D%20%28%2B0.500%2C%20%2B0.500%29%5C%2C%5Bm%5D)


![\vec r_{23} = (-0.500, +0.500)\,[m]](https://tex.z-dn.net/?f=%5Cvec%20r_%7B23%7D%20%3D%20%28-0.500%2C%20%2B0.500%29%5C%2C%5Bm%5D)


The resultant force is found by Coulomb's law and principle of superposition:
(1)
Please notice that particles with charges of <em>same</em> sign attract each other and particles with charges of <em>opposite</em> sign repeal each other.
(2)
Where:
- Electrostatic constant, in newton-square meters per square Coulomb.
,
,
- Electric charges, in Coulombs.
,
- Distances between particles, in meters.
,
- Unit vectors, no unit.
If we know that
,
,
,
,
,
,
and
, then the vector force on charge
is:

![\vec R = 0.072\cdot \left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2} \right) + 0.072\cdot \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2} \right)\,[N]](https://tex.z-dn.net/?f=%5Cvec%20R%20%3D%200.072%5Ccdot%20%5Cleft%28-%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%2C%20-%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%20%20%5Cright%29%20%2B%200.072%5Ccdot%20%5Cleft%28%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%2C%20-%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%20%20%5Cright%29%5C%2C%5BN%5D)
![\vec R = 0.072\cdot \left(0, -\sqrt{2}\right)\,[N]](https://tex.z-dn.net/?f=%5Cvec%20R%20%3D%200.072%5Ccdot%20%5Cleft%280%2C%20-%5Csqrt%7B2%7D%5Cright%29%5C%2C%5BN%5D)
And the magnitude of the <em>electrical</em> force on charge
(
), in newtons, due to the others is found by Pythagorean theorem:

The magnitude of <em>electrical</em> force on charge
due to the others is 0.102 newtons. 
To learn more on Coulomb's law, we kindly invite to check this verified question: brainly.com/question/506926
Energy and momentum are always conserved. Kinetic energy is not conserved in an inelastic collision though. And that is because it is converted to another form of energy
It's the external shape of the crystal. You can determine how developed the crystals are and it'll help identify what species of mineral it is. Hope that helped
Answer:
a = 1.055 x 10¹⁷ m/s²
Explanation:
First, we will find the force on electron:

where,
F = Force = ?
E = Electric Field = 6 x 10⁵ N/C
q = charge on electron = 1.6 x 10⁻¹⁹ C
Therefore,

F = 9.6 x 10⁻¹⁴ N
Now, we will calculate the acceleration using Newton's Second Law:

where,
a = acceleration = ?
m = mass of electron = 9.1 x 10⁻³¹ kg
therefore,

<u>a = 1.055 x 10¹⁷ m/s²</u>