LiCl, because lithium (Li) has one positively charged ion (1+), and
chloride (Cl) has one negatively charged ion (1-), so they
cancel each other out.
Answer:
h = 3.3 m (Look at the explanation below, please)
Explanation:
This question has to do with kinetic and potential energy. At the beginning (time of launch), there is no potential energy- we assume it starts from the ground. There, is, however, kinetic energy
Kinetic energy =
m
Plug in the numbers =
(4.0)(
)
Solve = 2(64) = 128 J
Now, since we know that the mechanical energy of a system always remains constant in the absence of outside forces (there is no outside force here), we can deduce that the kinetic energy at the bottom is equal to the potential energy at the top. Look at the diagram I have attached.
Potential energy = mgh = (4.0)(9.8)(h) = 39.2(h)
Kinetic energy = Potential Energy
128 J = 39.2h
h = 3.26 m
h= 3.3 m (because of significant figures)
The ideal gas constant is a proportionality constant that is added to the ideal gas law to account for pressure (P), volume (V), moles of gas (n), and temperature (T) (R). R, the global gas constant, is 8.314 J/K-1 mol-1.
According to the Ideal Gas Law, a gas's pressure, volume, and temperature may all be compared based on its density or mole value.
The Ideal Gas Law has two fundamental formulas.
PV = nRT, PM = dRT.
P = Atmospheric Pressure
V = Liters of Volume
n = Present Gas Mole Number
R = 0.0821atmLmoL K, the Ideal Gas Law Constant.
T = Kelvin-degree temperature
M stands for Molar Mass of the Gas in grams Mol d for Gas Density in gL.
Learn more about Ideal gas law here-
brainly.com/question/28257995
#SPJ4
The word that could fit to this is Text Mining. This word also referred to as text data mining, roughly equivalent to text analytics, a process of deriving high-quality information from text. This high quality information derived through the devising of patterns and trends through means such as statistical patter learning.