Answer: The box was moving with a velocity of 0.256m/s when it hit the spring
Explanation: Please see the attachments below
Answer:
ΔV=0.484mV
Explanation:
The potential difference across the end of conductor that obeys Ohms law:
ΔV=IR
Where I is current
R is resistance
The resistance of a cylindrical conductor is related to its resistivity p,Length L and cross section area A
R=(pL)/A
Given data
Length L=3.87 cm =0.0387m
Diameter d=2.11 cm =0.0211 m
Current I=165 A
Resistivity of aluminum p=2.65×10⁻⁸ ohms
So
ΔV=IR

ΔV=0.484mV
It makes no sense how you typed this problem out.
Answer:
200000 J
Explanation:
From the question given above, the following data were obtained:
Mass (m) of roller coaster = 1000 Kg
Velocity (v) of roller coaster = 20 m/s
Kinetic energy (KE) =?
Kinetic energy is simply defined as the energy possess by an object in motion. Mathematically, it can be expressed as:
KE = ½mv²
Where
KE => is the kinetic energy.
m =>is the mass of the object
V => it the velocity of the object.
With the above formula, we can obtain the kinetic energy of the roller coaster as follow:
Mass (m) of roller coaster = 1000 Kg
Velocity (v) of roller coaster = 20 m/s
Kinetic energy (KE) =?
KE = ½mv²
KE = ½ × 1000 × 20²
KE = 500 × 400
KE = 200000 J
Therefore, the kinetic energy of the roller coaster is 200000 J.
Answer:
C
Explanation:
The pattern is adding .5 to the cm every .1 in weight you just continue the table