Answer:
50 N
Explanation:
Let the force in the horizontal rope be F₁ and the force in the diagonal rope be F₂:
The total force in the horizontal and vertical directions must be zero, since the object is at rest and is not accelerating.
The horizontal component of the forces:
F₁ + F₂ = -40N + F₂ = 0
F₂ = 40N
The vertical component of the forces:
F₁ + F₂ - mg = 0 + F₂ - mg = 0
F₂ = mg
If I assume the gravitational constant g = 10 m/s²:
F₂ = (3 kg) * (10 m/s²) = 30N
Adding the horizontal and vertical components of the force F₂:
F₂ = √((40N)² + (30N)²) = 50N
Answer:
d = 506.25 ft
Explanation:
As we know by kinematics that

here we know that initially the stone is dropped from rest from the edge of the roof
so here initial speed will be zero
now we have

also the acceleration of the stone is due to gravity which is given as

now we have

so from above equation


Answer:

Explanation:
For a linear elastic material Young's modulus is a constant that is given by:

Here, F is the force exerted on an object under tensio, A is the area of the cross-section perpendicular to the applied force,
is the amount by which the length of the object changes and
is the original length of the object. In this case the force is the weight of the mass:

Replacing the given values in Young's modulus formula:

Since both hv same mass and elsstic collision, so their velocity will exchange. Bob A will stop and bob B will move with speed of A just before the collision.
Speed will be = squreroot ( 2*g*L)
L is length of pendulum
Answer:

Explanation:
given data
Radius of sphere 3.0 cm
charge Q = 2.0 m C
We know that maximum electric field is given as

electric field inside the sphere can be determine by using below relation


