A man pushes a couch across the room is the answer!
Explanation:
It is given that,
Mass of the object, m = 0.8 g = 0.0008 kg
Electric field, E = 534 N/C
Distance, s = 12 m
Time, t = 1.2 s
We need to find the acceleration of the object. It can be solved as :
m a = q E.......(1)
m = mass of electron
a = acceleration
q = charge on electron
"a" can be calculated using second equation of motion as :




a = 16.67 m/s²
Now put the value of a in equation (1) as :


q = 0.0000249 C
or

Hence, this is the required solution.
Answer:
After 1 sec = 4.9 m
After 2 sec = 19.6 m
After 3 sec = 44.1 m
After 4 sec = 78.4 m
After 5 sec = 122.5 m
Explanation:
After 1 sec:
<em>u=0m/s t=1 s a=9.8m/s²</em>
s = ut + (1/2)at²
=0(1) + (1/2)(9.8)(1²) = 4.9m
After 2 sec:
<em>u=0m/s t=2 s a=9.8m/s²</em>
s = ut + (1/2)at²
=0(2) + (1/2)(9.8)(2²) = 19.6m
After 3 sec:
<em>u=0m/s t=3 s a=9.8m/s²</em>
s = ut + (1/2)at²
=0(3) + (1/2)(9.8)(3²) = 44.1m
After 4 sec:
<em>u=0m/s t=4 s a=9.8m/s²</em>
s = ut + (1/2)at²
=0(4) + (1/2)(9.8)(4²) = 78.4m
After 5 sec:
<em>u=0m/s t=5 s a=9.8m/s²</em>
s = ut + (1/2)at²
=0(5) + (1/2)(9.8)(5²) = 122.5m
Answer:
Use the method on the image and solve it.
Option(a) the mass of cart 2 is twice that of the mass of cart 1 is the right answer.
The mass of cart 2 is twice that of the mass of cart 1 is correct about the mass of cart 2.
Let's demonstrate the issue using variables:
Let,
m1=mass of cart 1
m2=mass of cart 2
v1 = velocity of cart 1 before collision
v2 = velocity of cart 2 before collision
v' = velocity of the carts after collision
Using the conservation of momentum for perfectly inelastic collisions:
m1v1 + m2v2 = (m1 + m2)v'
v2 = 0 because it is stationary
v' = 1/3*v1
m1v1 = (m1+m2)(1/3)(v1)
m1 = 1/3*m1 + 1/3*m2
1/3*m2 = m1 - 1/3*m1
1/3*m2 = 2/3*m1
m2 = 2m1
From this we can conclude that the mass of cart 2 is twice that of the mass of cart 1.
To learn more about inelastic collision visit:
brainly.com/question/14521843
#SPJ4