Answer:
C
Explanation:
i could be wrong but it seems the most logical
Answer:
5.3×10⁴ m/s
Explanation:
From the question,
Momentum = mass× velocity
M = mV................ Equation 1
Where M = momentum of the airplane, m = mass of the airplane, V = Velocity of the airplane
make V the subject of the equation
V = M/m.................. Equation 2
Given: M = 1.6×10⁹ Kg.m/s, m = 3.0×10⁴ kg
Substitute these values into equation 2
V = 1.6×10⁹/3.0×10⁴
V = 5.3×10⁴ m/s
Answer:
The quantitative relationship between heat transfer and temperature change contains all three factors: Q = mcΔT, where Q is the symbol for heat transfer, m is the mass of the substance, and ΔT is the change in temperature. The symbol c stands for specific heat and depends on the material and phase. The specific heat is the amount of heat necessary to change the temperature of 1.00 kg of mass by 1.00ºC. The specific heat c is a property of the substance; its SI unit is J/(kg ⋅ K) or J/(kg ⋅ ºC). Recall that the temperature change (ΔT) is the same in units of kelvin and degrees Celsius. If heat transfer is measured in kilocalories, then the unit of specific heat is kcal/(kg ⋅ ºC).
Explanation:
Answer:
<em>The magnitude of the force is 10 N</em>
Explanation:
<u>Coulomb's Law</u>
The electrostatic force between two charged objects is directly proportional to the product of their charges and inversely proportional to the square of the distance between the two objects.
Written as a formula:
Where:
q1, q2 = the objects' charge
d= The distance between the objects
We have two identical charges of q1=q2=1 c separated by d=30000 m, thus the magnitude of the force is:
F = 10 N
The magnitude of the force is 10 N