Answer:
5.7141 m
Explanation:
Here the potential and kinetic energy will balance each other

This is the initial velocity of the system and the final velocity is 0
t = Time taken = 0.04 seconds
F = Force = 18000 N
a = Acceleration
g = Acceleration due to gravity = 9.81 m/s²
Equation of motion

From Newton's second law

Squarring both sides

The height from which the student fell is 5.7141 m
Answer:
body position 4 is (-1,133, -1.83)
Explanation:
The concept of center of gravity is of great importance since in this all external forces are considered applied, it is defined by
x_cm = 1 /M ∑
m_{i}
y_cm = 1 /M ∑ y_{i} mi
Where M is the total mass of the body, mi is the mass of each element
give us the mass and position of this masses
body 1
m1 = 2.00 ka
x1 = 0 me
y1 = 0 me
body 2
m2 = 2.20 kg
x2 = 0m
y2 = 5 m
body 3
m3 = 3.4 kg
x3 = 2.00 m
y3 = 0
body 4
m4 = 6 kg
x4=?
y4=?
mass center position
x_cm = 0
y_cm = 0
let's apply to the equations of the initial part
X axis
M = 2.00 + 2.20 + 3.40
M = 7.6 kg
0 = 1 / 7.6 (2 0 + 2.2 0 + 3.4 2 + 6 x4)
x4 = -6.8 / 6
x4 = -1,133 m
Axis y
0 = 1 / 7.6 (2 0 + 2.20 5 +3.4 0 + 6 y4)
y4 = -11/6
y4 = -1.83 m
body position 4 is (-1,133, -1.83)
Answer:
magnitude=34.45 m
direction=
Explanation:
Assuming the initial point P1 of this vector is at the origin:
P1=(X1,Y1)=(0,0)
And knowing the other point is P2=(X2,Y2)=(19.5,28.4)
We can find the magnitude and direction of this vector, taking into account a vector has a initial and a final point, with an x-component and a y-component.
For the magnitude we will use the formula to calculate the distance
between two points:
(1)
(2)
(3)
(4) This is the magnitude of the vector
For the direction, which is the measure of the angle the vector makes with a horizontal line, we will use the following formula:
(5)
(6)
(7)
Finding
:
(8)
(9) This is the direction of the vector
Answer:162.516 gm
Explanation:
Given
Quartz contains 46.7 % silicon by mass
i.e.Silicon is 46.7 % by mass
Total mass of Quartz m=348 gm
46.7% of 348 gm