If net external force acting on the system is zero, momentum is conserved. That means, initial and final momentum are same → total momentum of the system is zero.
Answer:
0.958 m
Explanation:
So the total mass of the system is
M = 1.93 + 2.95 + 2.41 + 3.99 = 11.28 kg
let y be the distance from the center of mass to the origin. With the reference to the origin then we have the following equation



So the center of mass is 0.958 m from the origin
Ummmm I don’t know this sorry
Answer:

Explanation:
Energy is directly proportional to frequency and it is given as:
E = hf
where h = Planck's constant
f = frequency
To get frequency, we use the formula of speed:
c = λf
where c = speed of light
λ = wavelength
=> f = c/λ
Therefore, the energy of the photon will be:
E = hc/λ


The energy of the photon is 
Answer:
b is the answer the third law
Explanation: