D.) 5kg
This is a trick question. The mass of an object does not change based in location. However the weight of an object does change, this is because Weight = Mass × Gravity. Also mass is measured in kilograms and so the answer is 5 kg. So if you ever want to lose weight just go to the moon!
Answer:
Masses and distance between them
Explanation:
The gravitational force between two objects can be calculated using Newton's Gravitational Law.
However, using logic, we can already dictate what the answer will be, for example. We know that the bigger an object is, the stronger its gravity is. This can be seen with how the moon is much smaller, and also has much less gravity.
Also, the distance between two objects also influences the gravity. This can be seen the further an object gets from Earth, the less of a pull the gravitational field has on it. Another example is that Pluto (being very far from the sun) has less of a gravitational effect from the sun, in comparison to Mercury (the closest plant to the sun).
To calculate the horizontal distance traveled by the shot if it leaves the athlete's hand at a height of 2.20 above the ground we can get the root of the quad equation for time are t=-0.24 or t =1.84 taking the t = 1.84, so the equation will be:
x = 15.6cos(30) * 1.86, x = 24.79m
Answer:
10m/s²
Explanation:
Given parameters:
Initial velocity = 0m/s
Final velocity = 100m/s
Time taken = 10s
Unknown:
Acceleration = ?
Solution:
Acceleration is the rate of change of velocity with time.
A =
v = final velocity
u = initial velocity
t = time taken
So, insert the parameters and solve;
A = = 10m/s²
Answer:
Ohm's Law
Explanation:
The relationship:
where V represents the voltage across a resistor of resistance "R" through which a current (I) flows,
is known as Ohm's Law in honor of Georg Ohm, who discover this proportionality.