I would say the correct answer would be light travels faster in medium 3 then medium 2.
No, the density of diamond and graphite would not be the same
Explanation:
What is density?
Density is the amount of substance per unit volume. It is simply mass divided by volume.
Density is greatly influenced by the way substances are packed.
Substances that are well packed will have lower volume for the same amount of matter than another that is poorly packed.
- The carbon atoms in graphite are poorly packed. They are arranged layers upon layers.
- Diamond carbon atoms have a cross-linked networked pattern. They are well packed.
- For the same mass of matter, graphite will take up more space than diamond.
Since:
Density = 
The one that has a lesser volume will have a higher density.
Therefore diamond will have a higher density.
learn more:
Density brainly.com/question/5055270
#learnwithBrainly
Answer:
A., B., and C.
Explanation:
An Ohmic material is a material that obeys Ohm's Law, V = IR.
In contrast, a non-Ohmic material is one that does not obey Ohm's law.
Ohm's law states that the voltage across an electrical object is proportional to the current flowing through it, with the constant of proportionality being Resistance, R (in Ohm's).
The only Non-Ohmic material is the semiconductor, as semiconductors do not obey Ohm's law.
The concepts necessary to solve this problem are framed in the expression of string vibration frequency as well as the expression of the number of beats per second conditioned at two frequencies.
Mathematically, the frequency of the vibration of a string can be expressed as

Where,
L = Vibrating length string
T = Tension in the string
Linear mass density
At the same time we have the expression for the number of beats described as

Where
= First frequency
= Second frequency
From the previously given data we can directly observe that the frequency is directly proportional to the root of the mechanical Tension:

If we analyze carefully we can realize that when there is an increase in the frequency ratio on the tight string it increases. Therefore, the beats will be constituted under two waves; one from the first string and the second as a residue of the tight wave, as well


Replacing
for n and 202Hz for 



The frequency of the tightened is 205Hz
Answer:
9.2 amperes
Explanation:
Ohm's law states that the voltage V across a conductor of resistance R is given by 
Here, voltage V is proportional to the current I.
For voltage, unit is volts (V)
For current, unit is amperes (A)
For resistance, unit is Ohms (Ω)
Put R = 12.5 and V = 115 in V=RI
