The answer is position 3, because it is at its lowest point.
Potential Energy is “stored energy.” It is energy that is ready to be converted or released as another type of energy. We most often think of potential energy as gravitational potential energy. When objects are higher up, they are ready to fall back down. When you stretch an object and it has a tendency to return to its original shape, it is said to have elastic potential energy. Chemical potential energy is the stored energy in a substance’s chemical structure that can be released in a chemical reaction or as heat.
In any case, your mass would be<em> 68 kg </em>no matter what
Answer:
The final velocity of the vehicle is 10.39 m/s.
Explanation:
Given;
acceleration of the vehicle, a = 2.7 m/s²
distance moved by the vehicle, d = 20 m
The final velocity of the vehicle is calculated using the following kinematic equation;
v² = u² + 2ah
v² = 0 + 2 x 2.7 x 20
v² = 108
v = √108
v = 10.39 m/s
Therefore, the final velocity of the vehicle is 10.39 m/s.
Answer:
a) the maximum transverse speed of a point on the string at an antinode is 5.9899 m/s
b) the maximum transverse speed of a point on the string at x = 0.075 m is 4.2338 m/s
Explanation:
Given the data in the question;
as the equation of standing wave on a string is fixed at both ends
y = 2AsinKx cosωt
but k = 2π/λ and ω = 2πf
λ = 4 × 0.150 = 0.6 m
and f = v/λ = 260 / 0.6 = 433.33 Hz
ω = 2πf = 2π × 433.33 = 2722.69
given that A = 2.20 mm = 2.2×10⁻³
so
= A × ω
= 2.2×10⁻³ × 2722.69 m/s
= 5.9899 m/s
therefore, the maximum transverse speed of a point on the string at an antinode is 5.9899 m/s
b)
A' = 2AsinKx
= 2.20sin( 2π/0.6 ( 0.075) rad )
= 2.20 sin( 0.7853 rad ) mm
= 2.20 × 0.706825 mm
A' = 1.555 mm = 1.555×10⁻³
so
= A' × ω
= 1.555×10⁻³ × 2722.69
= 4.2338 m/s
Therefore, the maximum transverse speed of a point on the string at x = 0.075 m is 4.2338 m/s