Answer: V=IR
Explanation: for a series circuit connected to a battery supply, the total emf across the circuit is given as
E = I(R + r) and by expanding, we have that E =IR + It
Where r is the internal resistance of the battery
I is the total current flowing in the circuit
R total load resistance in the circuit.
E is the total emf of the circuit.
The total emf is the sum of 2 separate voltages.
"IR" which is the terminal voltage and "Ir" which is the loss voltage.
The teenila voltage is the voltage flowing in the circuit based on the equivalent resistance of the circuit while the loss voltage is the wasted voltage based on the internal resistance of the battery source.
Force = (mass) x (acceleration)
= (0.025 kg) x (5 m/s²)
= 0.125 Newton
Answer:
Potential energy is energy that is stored – or conserved - in an object or substance. This stored energy is based on the position, arrangement or state of the object or substance. You can think of it as energy that has the 'potential' to do work.
( 1.05 x 10¹⁵ km ) x ( 1 LY / 9.5 x 10¹² km ) x ( 1 psc / 3.262 LY ) =
(1.05) / (9.5 x 3.262) x (km · LY · psc) / (km · LY) x (10¹⁵⁻¹²) =
(0.03388) x (psc) x (10³) =
33.88 parsecs
Answer:
Explanation:
This is a simple gravitational force problem using the equation:
where F is the gravitational force, G is the universal gravitational constant, the m's are the masses of the2 objects, and r is the distance between the centers of the masses. I am going to state G to 3 sig fig's so that is the number of sig fig's we will have in our answer. If we are solving for the gravitational force, we can fill in everything else where it goes. Keep in mind that I am NOT rounding until the very end, even when I show some simplification before the final answer.
Filling in:
I'm going to do the math on the top and then on the bottom and divide at the end.
and now when I divide I will express my answer to the correct number of sig dig's:
6.45 × 10¹⁶ N