<span>The unknown substance is silver.
I don't see a list of available substances, but let's see if there's something reasonable available that will match. First, let's calculate the density of the unknown substance. Density is mass per volume, so
273 g / 26 mL = 10.5 g/mL
Looking up a list of elements sorted by density, I see the following:
10.07 Actinium
10.22 Molybdenum
10.5 Silver
11.35 Lead
And silver at 10.5 g/ml is a very nice match for the unknown substances' density of 10.5 g/ml.</span>
Since the two taped poles of the magnets labeled A and B attracts one to each other, we know that the two taped poles are oppsosite.
So, you can predict with total certainty that when she brings the taped end of the third magnet (magnet C) near each of the first two magntes, in one case they will attract each other and in the other case they will repele mutually.
You are certain of that because, since the taped poles of the first two magnets are opposite, the pole of the third magnet has to be equal to one of the two first taped poles and opposite to the other of the two firest taped poles.
Yes heating water allows it to dissolve more Sugars because the molecular distance increases and this distance can be covered by more sugar. In the given question, The independent variable would be the temperature of water.
Since to whatever temperature the water boils at the boiling temperature of does not change remains hundred degree. Rest all the variables can vary the weight of the amount of sugar with the variable in the temperature of Boiling of water to remain constant.