Explanation: Velocity is the displacement of an object during a specific unit of time. Two measurements are needed to determine velocity. Displacement and time. Displacement includes a direction, so velocity also includes a direction. Speed with direction. Velocity can be an average velocity or an instantaneous velocity. Units for velocity are the same as for speed: m/s, km/h, and mph. Delta x(Δx) is the symbol used for displacement. Delta (Δ) means to "change in." Δx means to "change in position." Δx is calculated by final position minus initial position. Velocity formula: → v=Δx/t as a fraction.
v=Δx/t

<em><u>Final answer is 30.</u></em>
Hope this helps!
Thanks!
Have a great day!
-Charlie
The first thing you should know for this case is that work is defined as the product of force by the distance traveled in the direction of force.
We have then:
W = Fd
The distance varies, so we must integrate:
from 0 to 20:
W = ∫F (x) dx
W = ∫32xdx
W = 32∫xdx
W = 32 (x ^ 2/2) = (16) (20 ^ 2) = 6400 ft * lbs
answer:
6400 ft * lbs is work done pulling the rope up 20 ft
Gravitational potential energy=mass x height X gravitational field strength
=0.5 x1.5 x9.7(gravity)=7.275J
Answer:
Into the page (Answer B)
Explanation:
Recall that the magnetic field that is created around a current conducting wire follows the right hand rule, where the direction of your fingers point in the direction of the magnetic field vectors when your thumb points in the direction of the current flow.
Use this to see that as you place the thumb of your right hand on the page pointing to the right (direction of the current in the wire). As you do so, you find the four fingers of your right hand entering the paper.