Explanation:
Given data:
d = 30 mm = 0.03 m
L = 1m
S
= 70 Mpa
Δd = -0.0001d
Axial force = ?
validity of elastic deformation assumption.
Solution:
O'₂ = Δd/d = (-0.0001d)/d = -0.0001
For copper,
v = 0.326 E = 119×10³ Mpa
O'₁ = O'₂/v = (-0.0001)/0.326 = 306×10⁶
∵δ = F.L/E.A and σ = F/A so,
σ = δ.E/L = O'₁ .E = (306×10⁻⁶).(119×10³) = 36.5 MPa
F = σ . A = (36.5 × 10⁻⁶) . (π/4 × (0.03)²) = 25800 KN
S
= 70 MPa > σ = 36.5 MPa
∵ elastic deformation assumption is valid.
so the answer is
F = 25800 K N and S
> σ
Speed v = initial speed u + acceleration a x time t
v=u+at = 2 + 4*3 = 14 m/s
Answer:
See the explanation below.
Explanation:
If you connect the three bulbs 20 W each will have a total power of 60W.
Now we need to understand to assign the meaning of the word gap, that is, if the circuit is open at that point or if there is no bulb connected at that point.
If the circuit is open at Point 2, there will be no current in the circuit, so the battery will drain faster with the three bulbs 20W.
In the second event, where gap means that there are no bulbs connected at that point, it means that you have two bulbs connected in series of 80W each.
In this case the bulbs will consume 160W thus drain the battery faster than the three 20W bulbs connected in series.
The speed
of the elevator at the beginning of the 8 m descent is nearly 4 m/s. Hence, option A is the correct answer.
We are given that-
the mass of the elevator (m) = 1000 kg ;
the distance the elevator decelerated to be y = 8m ;
the tension is T = 11000 N;
let us determine the acceleration 'a' by using Newton's second law of motion.
∑Fy = ma
W - T = ma
(1000kg x 9.8 m/s² ) - 11000N = 1000 kg x a
9800 - 11000 = 1000
a = - 1.2 m/s²
Using the equation of kinematics to determine the initial velocity.
² =
² + 2ay
= √ ( 2 x 1.2m/s² x 8 m )
= √19.2 m²/s²
= 4.38 m/s ≈ 4 m/s
Hence, the initial velocity of the elevator is 4m/s.
Read more about the Equation of kinematics:
brainly.com/question/12351668
#SPJ4
Answer:
Sherpas do work that is much more meaningful than the work other climbers do.
Explanation: