Steam is often used as a central heating system when heating many buildings froma central location. So the correct option for the given question is option "D". Steam is actually generated ina single room or place mechanically or by useing fossil fuel or solar energy and then it is passed through pipelines to several rooms and buidings. This kind of system is mostly used when heating several rooms or building at once. Electric heaters are normally avoided as the cost of electricity is far higher than any other source of heating.
for this we apply, Heisenberg's uncertainty principle.
it states that physical variables like position and momentum, can never simultaneously know both variables at the same moment.
the formula is,
Δp * Δx = h/4π
m(e).Δv * Δx = h/4π
by rearranging,
Δx = h / 4π * m(e).Δv
Δx = (6.63*10^-34) / 4 * 3.142 * 9.11*10^-31 * 5.10*10^-2
Δx = 6.63*10^-34 / 583.9 X 10 ⁻³¹
Δx = 0.011 X 10⁻³
for the bullet
Δx = (6.63*10^-34) / 4 * 3.142 * 0.032*10^-31 * 5.10*10^-2
Δx = 6.63*10^-34 /2.05
Δx =3.23 X 10⁻³² m
therefore, we can say that the lower limits are 0.011 X 10⁻³ m for the electron and 3.23 X 10⁻³² m for the bullet
To know more about bullet problem,
brainly.com/question/21150302
#SPJ4
Answer:
Blue supergiants represent a slower burning phase in the death of a massive star. Due to core nuclear reactions being slightly slower, the star contracts and since very similar energy is coming from a much smaller area (photosphere) then the star's surface becomes much hotter.
Explanation:
I know this may not be the answer youre looking for, but hopefully this can help somehow!
The process you're fishing for is "polarization", but that's a
misleading description.
Polarization doesn't do anything to change the light waves.
It simply filters out (absorbs, as with a polarizing filter) the
light waves that aren't vibrating in the desired plane, and
allows only those that are to pass.
The intensity of a light beam is always reduced after
polarizing it, because much (most) of the original light
has been removed.
A laser light source may be thought of as an exception,
since everything coming out of the laser is polarized.
First I’ll show you this standard derivation using conservation of energy:
Pi=Kf,
mgh = 1/2 m v^2,
V = sqrt(2gh)
P is initial potential energy, K is final kinetic, m is mass of object, h is height from stopping point, v is final velocity.
In this case the height difference for the hill is 2-0.5=1.5 m. Thus the ball is moving at sqrt(2(10)(1.5))=
5.477 m/s.