Answer:
a)30.14 rad/s2
b)43.5 rad/s
c)60633 J
d)42 kW
e)84 kW
Explanation:
If we treat the propeller is a slender rod, then its moments of inertia is

a. The angular acceleration is Torque divided by moments of inertia:

b. 5 revolution would be equals to
rad, or 31.4 rad. Since the engine just got started


c. Work done during the first 5 revolution would be torque times angular displacement:

d. The time it takes to spin the first 5 revolutions is

The average power output is work per unit time
or 42 kW
e.The instantaneous power at the instant of 5 rev would be Torque times angular speed at that time:
or 84 kW
Answer:
Friction: is used to hang an object on the wall
Force: is what will determine if the object stays in place or not
Explanation:
Answer:
your total displacement is 2 miles north
Explanation:
Answer:
Two times as much
Explanation:
The equation for gravitational force is: Fg = GMm/r^2 with G being the universal gravitational constant.
So to make things easier we'll set r equal to 1 since it's a constant as well as G.
Then we're left with Fg=Mm with M being the mass of the sun and m being the mass of the earth.
So if m is constant and supposedly equals 1 then Fg=M so Fg is proportional to M therefore if M doubles then Fg doubles.
230 Newton
Electric charge consists of two types i.e. positively electric charge and negatively electric charge.There was a famous scientist who investigated about this charges. His name is Coulomb and succeeded in formulating the force of attraction or repulsion between two charges i.e. :
F = electric force (N)
k = electric constant (N m² / C²)
q = electric charge (C)
r = distance between charges (m)
The value of k in a vacuum = 9 x 10⁹ (N m² / C²)
F = k(q1 q2)/ r^2
Distance between protons = d = 10⁻¹⁵ m
charge of proton = q = 1.6 × 10⁻¹⁹ C
Here q1=q2
electric force = F =230N
Coulomb's Law. Two protons in an atomic nucleus are typically separated by a distance of 2×10−15m. The electric repulsive force between the protons is huge, but the attractive nuclear force is even stronger and keeps the nucleus from bursting apart.
2 Nuclei and the Need for an Attractive Nuclear Force. The Coulomb force also acts within atomic nucleii, whose characteristic dimension is 10 m, which is called a fermi. There are two protons in a He nucleus, which repel each other because of the Coulomb force.
Find more about electric force of repulsion between nuclear protons
brainly.com/question/8404637
#SPJ4